
ISG Smart Card Centre – Royal Holloway University of London

Re: Performance Evaluation of the TUAK algorithm in support of the

ETSI Sage standardisation group

Date: 25.03.2014

Professor Keith Mayes

Director ISG-Smart Card Centre

+44 (0)178414408

keith.mayes@rhul.ac.uk

www.scc.rhul.ac.uk

www.isg.rhul.ac.uk

Dear Sirs,

 Please find attached a report on a brief performance evaluation study carried out at Royal

Holloway University of London at the request of the ETSI Sage group and supported with some

funding from GCHQ (UK). The study was to assess the likely performance and hence feasibility of

the new TUAK 3G authentication algorithm when deployed on typical and existing smart card

platforms. The study was successfully concluded thanks to practical assistance from Crisp Telecom

and Digital Locksmiths (DL), and expert advice from Steve Babbage (Vodafone), Sean Kelly (DL),

Alexander Maximov (Ericsson) and Chris Torr (MULTOS).

Best regards

Professor Keith Mayes, PhD. BSc, CEng, FIET, A.Inst.ISP
Director
ISG-Smart Card Centre
Royal Holloway, University of London

V1.0 1 of 19

http://www.isg.rhul.ac.uk/
http://www.scc.rhul.ac.uk/

ISG Smart Card Centre – Royal Holloway University of London

 1 Introduction
The initial requirements for the project were well described by the words of the primary SAGE contact

(Steve Babbage, Chief Cryptographer at Vodafone).

“Mobile operators running 3G networks can choose their own crypto algorithms for subscriber

authentication and session key generation - but most prefer to use a well-studied, trusted, designed-for-

purpose algorithm, rather than risk designing their own. One such de facto standard algorithm already

exists, called MILENAGE. Recently, ETSI SAGE designed a second authentication and session key

generation algorithm, called TUAK (based on KECCAK). This was done for two main reasons:

• Although MILENAGE is currently believed to be strong, if ever a new development in

cryptanalysis exposed a weakness in it, it would be much better if the industry already had an

alternative in place, with implementations ready and tested.

• The mobile machine-to-machine business is moving towards the use of "embedded SIMs",

whereby SIM hardware is soldered into the devices, and the assignment to a mobile operator

and the provisioning of security credentials is done later, over the air. Some of these devices

may have to last for twenty years or more. Having two strong algorithms (MILENAGE and

TUAK) built into the hardware, and available for selection by operators, will give belt and

braces protection - rather than relying on a single algorithm to remain unbroken for such a long

time.

TUAK is fundamentally different from MILENAGE in its design principles, so that an advance in

cryptanalysis affecting one of the two algorithms is unlikely to affect the other. Industry acceptance

and adoption of the TUAK algorithm relies on more than just a convincing security analysis. It also

requires confidence that the algorithm can be implemented on smart cards (SIMs) with sufficiently

good performance, i.e. low enough gate count, low enough power, low enough running time. This

includes implementations with protection against side channel attacks (power analysis, timing analysis

etc.). The Smart Card Centre at Royal Holloway is an ideal body to carry out this performance

analysis. The results, when published, will help to ensure that the TUAK algorithm is adopted by the

industry, and that this important "belt and braces" protection becomes reality. Without it, the industry

will continue to rely heavily on a single algorithm; this algorithm still seems solid today, but you never

know when a cryptanalytic breakthrough will come along.”

V1.0 2 of 19

ISG Smart Card Centre – Royal Holloway University of London

 1.1 Interpreting the Requirements
To get maximum guidance from what was a very short study on performance, required focussing on the

likely questions that a Mobile Network Operator (MNO) may raise when considering deployed SIMs, stocks

of SIMs and procurement of new SIMs. The questions are listed below.

(a) Is it possible to load the algorithm onto an existing deployed, or stocked smart card platform?

(b) If so, will the algorithm run with acceptable performance?

(c) Will a new SIM require a crypto-coprocessor for adequate performance?

(d) Will a new SIM need to have a high performance processor (e.g. 32-bit type)?

(e) Will a new SIM require specialist low-level software support for the algorithm?

(f) Will the algorithm benefit from security protection?

In trying to answer these questions it was necessary to consider a method of experimentation that would give

relevant results yet would not be tied to a particular processor or optimised for particular chip features.

Emulation was initially considered, however used alone this can be misleading due to the difficulty of

mapping emulations to real card performance. The use of a multi-application card platform was considered

as a positive means of abstraction from any particular chip, and could be representative of loading the

algorithm onto existing/stock SIMs. However, the performance of such platforms (e.g. MULTOS/Java Card)

is usually greatly inferior to a native card implementation and so the results would not tell us much about

implementation in low-level specialist software. Finally we needed a way to consider security protection,

which might be offered by a chip or platform, but could be non-existent in a simple native code

implementation.

V1.0 3 of 19

ISG Smart Card Centre – Royal Holloway University of London

 2 The Experimental Setup
Based on the arguments presented in the introduction it was decided to use a combination of emulation,

MULTOS platform development and comparative native test implementations on Infineon SLE77 and

SLE78 chips. The MULTOS platform was used basically because the development tools were readily

available along with MULTOS M3 and M4 test cards, which are based on the SLE78 and SLE77 chips

respectively; the types that were also available for the native tests.

[For completeness the code could also be ported to Java Card, although the available cards/chips may be

different].

 2.1 The Smart Card Chips

Although the chips for experimentation were in part dictated by availability and practicality, they were very

relevant choices. They both have 16-bit CPUs, which is a size representative of the majority of deployed

SIMs (although there are still 8-bit CPUs around, as well as newer 32-bit CPUs). Whilst they are of similar

family, horsepower and vintage they are quite different in security aspects.

 2.1.1 SLE77
The SLE77 may be considered as a traditional style security controller intended for mid-range payment

applications and it has been evaluated to Common Criteria EAL5+. It contains a crypto-coprocessor, but as it

does not support TUAK/KECCAK it was not relevant for our tests. Details of the chip protection measures

against physical, side-channel leakage and faults are not publicised, however in a traditional security chip

hardware one might expect protective shields, plus power smoothing and noise insertion to counter power

analysis, and sensors/detectors to counter fault attacks. Some protection may arise from the application and

OS software e.g. randomised/repeated operation and dummy cycles, although this may be optimised for the

included algorithms. For a new algorithm running on this chip, we should expect some protection from the

hardware, although the final algorithm code may have to help improve this, which would likely degrade from

the performance measured in our experiments.

V1.0 4 of 19

ISG Smart Card Centre – Royal Holloway University of London

 2.1.2 SLE78
The SLE78 is a very innovative type of security controller intended for high security applications. Instead of

relying mainly on shields and sensors it uses “Integrity Guard”, which exploits dual CPUs. The publicly

claimed features include:

• Dual CPU implementation for fault detection

• Full CPU, memory, Bus and Cache encryption

• Error detection codes on all memories

• Error codes for cache protection

• Address and data scrambling of memories

• Active Shield

The dual CPUs are also believed to work on inverted logic so that side-channel leakage is snuffed out at

source. Running the algorithm on the SLE78 should offer it a good deal of hardware protection even without

the addition of major software countermeasures.

 2.2 Software Development

The starting point for the software development was the example code published in 3GPP TS 35.231. This

went through several versions (under SAGE guidance) during the course of this project, based on

results/feedback and on-going optimisation work.

The primary template was a general speed optimised version that could be built for 8, 16, 32 and 64 bits and

made use of generic loops and macros. For the experiments, the 64 bit option was discounted as being

unrealistic in the near future for smart cards and because not all legacy C compilers can easily cope with

integer variables beyond 32 bits. Some minor modifications were made to the initial smart card code, but

largely it remained true to the original generic (non-optimised) code. Later, in order to understand some

performance issues relating to the algorithm running on the MULTOS platform, a 32-bit version of the code

was part-optimised (at C level), which involved expanding the Macros and unrolling the inner loops within

the main KECCAK functions. The final MULTOS version also used fixed pointers for buffer manipulation.

Note that in all versions of the code, the calculation of TOPC was removed from each function. Basically the

calculation derives a result from operator parameters using the KECCAK algorithm. Within a smart card this

value would have been pre-calculated and loaded into protected memory and so there is no need to

recalculate it; and in fact doing so could halve a TUAK function's execution speed.

V1.0 5 of 19

ISG Smart Card Centre – Royal Holloway University of London

 2.2.1 Software Functional Testing
For confirming the TUAK functionality, we used the six test data sets published in 3GPP TS 35.232 V12.0.1.

In order to make real card testing easier (by simplifying the test scripts) the test data sets were included

within the card application. This added an extra static data requirement (that would not be used in a real

application), but meant that tests could either be run by simply specifying the test set within the card test

command, or by supplementing the test set with some data added to the command. Each command also had

an execution count so the targeted function could be run from 0 to 255 times (on the same input data) in

response to a single command. Typically the count would be '1', although '0' was useful for estimating round

trip delays and higher counts helped improve measurement precision.

 2.3 Performance Testing and Commands

When code is developed for and run on a PC there is the luxury of using timers, user displays and file

logging to measure and report performance, however with a traditional smart card we do not have timers or a

conventional user interface. Performance is assessed by using a scripting tool to send a command message

to the card in the form of an Application Protocol Data Unit (APDU) and then timing the wait for the card

response. Although the card processing time should be consistent and repeatable, the external scripting

applications may be less predictable (as they sit on multi-application computers) and so tests can be

calibrated and repeated to improve accuracy and/or for precise measurement a protocol analyser can be used

on the card I/O line as shown in Figure 1. The usual I/O measurement for card processing and response

speed is from the last transmission of the final command byte (T1) to the first transition of the response (T2);

and that is the approach used in our tests. If we think of the card as providing a service to the requester then

we might have considered the whole period between the first transition of the command (T0) to the last

transition of the response (T3). However a service requester (e.g. phone) would normally start its “wait

timer” after sending the command and so T1-T3 is the more representative of total service time. Our native

mode experiments estimate T1-T2, by asking the card to run the algorithm many times before giving the

result and so the single period T2-T3 (which is data length dependent) has little effect on the T1-T2 average.

If required, the T1-T2 results can be approximated to T1-T3 results by adding the time to transmit the

response data at the operational baud rate. Note that for the platform results, T1-T2 is so long that the T2-T3

period is considered negligible by comparison.

V1.0 6 of 19

ISG Smart Card Centre – Royal Holloway University of London

 2.3.1 APDU Test Commands

The structure of a typical APDU is shown in Fig 2.

V1.0 7 of 19

Figure 2: APDU example

Figure 1: Performnace Measurement Points

ISG Smart Card Centre – Royal Holloway University of London

The main test commands that were used for experiments are listed in Table 1.

Table 1: APDU Card Commands

Name CLA INS P1 P2 P3

CMD_TUAK_f1_f1s 00 8C 00-

FF

8x/

9x

00

CMD_TUAK_f2345 00 8D 00-

FF

8x 00

CMD_TUAK_f5s 00 8F 00-

FF

8x 00

Notes

− All numbers are hexadecimal.

− P1 is the number of times to run the function (on the same input data) before returning a result; from

0 to 255.

− P2 MSB = 1 indicates that all test data is sourced from the card application.

− P2 Lower nibble is the test data selector, 0 to 5 corresponding to TS 35.232 test data sets 1 to 6.

− P2 LSB of upper nibble = 0 indicates f1 function, otherwise f1s (applies only to

CMD_TUAK_f1_f1s)

− The response data is the concatenated results indicated in TS 35.232.

The commands are actually generated by scripting tools. For the experiments, MUTIL was mainly used for

this purpose.

V1.0 8 of 19

ISG Smart Card Centre – Royal Holloway University of London

 3 Results

In this section we present the results from the experiments. From the outset it is worth stating that whilst the

results from the native cards were pleasingly faster than expected on both chip types, the MULTOS platform

results were slower than hoped for, and by a significant margin.

 3.1 Native card performance

The native card performance was mainly measured on the SLE77. One version of the algorithm (32-bit) was

run on the SEL78. The results are shown in Table 2.

Table 2: Native Results (ms)

V1.0 9 of 19

ISG Smart Card Centre – Royal Holloway University of London

 3.2 MULTOS results

The results from the MULTOS card tests are shown in Table 3 and a glance will show much slower speed

than native mode.

Table 3: MULTOS Results (ms)

V1.0 10 of 19

ISG Smart Card Centre – Royal Holloway University of London

Normally, if the MULTOS organisation decides that a new function should be implemented by the VM then

it would be coded in low-level software and invoked from an API. In this case the performance should be

closer to that of Table 2, however as this is not the case at the moment the Table 3 figures apply. All the

versions of the application benefits from a typical memory optimisation i.e. the KECCAK main buffer

(INOUT) was forced into a reserved section of RAM. If this has not been imposed and the buffer was stored

in NVM then speed would have been much slower; experiments showed that the 8-bit and 16-bit versions

would have been three times slower and the 32-bit version five time slower. The “32x” rows represent the

“unrolled” version of KECCAK, which is a removal of inner loops and macros in the C code. and the “32p”

version also uses fixed pointers rather than array index calculations.

V1.0 11 of 19

ISG Smart Card Centre – Royal Holloway University of London

 4 Analysis of Results

To consider the results from the experiments, it is necessary to be aware of the parameter sizes (bits) inherent

in the standardised test-sets, which are summarised in Table 4.

Table 4: Table 4: Test Data set Parameter Sizes

Test Set K MAC RES CK IK KECCAK

Iterations

1 128 64 32 128 128 1

2 256 128 64 128 128 1

3 256 256 64 128 256 1

4 128 128 128 128 128 1

5 256 64 256 256 128 1

6 256 256 256 256 256 2

Note that the common/fixed parameters sizes (bits) for the TUAK algorithm are:

• RAND = 128

• SQN = 48

• AK = 48

• AMF = 16

Note also that “KECCAK Iterations” is an algorithm usage parameter and is not the same as using the APDU

command parameter (P2) to run a function multiple times; the latter always using the same input data.

 4.1 Performance Target

We also need to bear in mind the performance target, so we can start by recalling the target used for the

MILENAGE design.

…..“The functions f1—f5 and f1* shall be designed so that they can be implemented on an IC

card equipped with a 8-bit microprocessor running at 3.25 MHz with 8 kbyte ROM and 300byte

RAM and produce AK, XMAC-A, RES, CK and IK in less than 500 ms execution time.”....

V1.0 12 of 19

ISG Smart Card Centre – Royal Holloway University of London

Technology has moved on quite significantly and it might be quite hard to even find a SIM chip that has

these minimal capabilities, and indeed many do not have ROM any more. Furthermore the target is a little

ambiguous and could be interpreted that if you ran all the functions in sequence each could take 500ms. It is

also not clear how much of the ROM and RAM can be used. A more appropriate and modern target could

be...

…..“The functions f1—f5 and f1* shall be designed so that they can be implemented on a mid-

range microprocessor IC card (typically 16-bit CPU), occupying no more than 8kbytes non-

volatile-memory (NVM), reserving no more than 300bytes of RAM and producing AK, XMAC-

A, RES, CK and IK in less than 500 ms total execution time.”....

 4.2 Native Mode

If we consider the results from the SLE77 we can see that the function execution times for the various test

data sets are quite similar with the exception of test set 6. The difference is not surprising as this set is the

only one that uses a double iteration of KECCAK, which roughly speaking almost doubles the execution

time. As can be seen from Figure 3, compiling the generic code for the different target bit widths affects the

execution time, but not by an enormous margin as the compiler does a reasonable job of mapping the source

code to an efficient processor implementation. The most efficient version is the 16-bit target, which is not

surprising as that provides the best fit for the underlying processor.

V1.0 13 of 19

Figure 3: Comparison of Native Mode Execution Times

ISG Smart Card Centre – Royal Holloway University of London

Due to time/practical constraints we only have SLE78 figures for the 32-bit target. They show that the chip

has very similar speed to the SLE77 in native mode. The extra security features of the SLE78 do not seem to

penalise performance although there may be an added financial cost. The striking observation is that native

mode performance satisfies our target and by a very comfortable margin. It is therefore reasonable to

conclude that provided the algorithm is custom-coded on a typical (rather than highest performance) SIM

chip there is no need for a crypto-coprocessor.

This study focussed more on performance than code-size minimisation, as the latter is less of an issue in

smart cards these day. However, for all native mode implementations the application size should fit within

our new target requirement.

 4.3 Platform Mode

Due to time/practical constraints we were only able to consider the MULTOS platform; although a Java Card

implementation would be useful follow-on work to complete the picture. The results here were rather

disappointing, although a significant overhead had been expected due to the operation of the secure Virtual

Machine and the MULTOS Execution Language (MEL) abstraction. In practice, the best results were around

two orders of magnitude slower than native; see Figure 4.

V1.0 14 of 19

Figure 4: MULTOS f1() Execution Times

ISG Smart Card Centre – Royal Holloway University of London

Furthermore, the performance improved with the target CPU size, which suggests that the compilation and

MEL interpretation does not map closely to the underlying CPU size for the processing in TUAK.

Within the scope of this study we were not meant to optimise for any particular processor capability,

although it was considered reasonable to modify the C source if that would make it easier for the compiler to

optimise. On inspection of the generic KECCAK function one would see extensive use of macros and loops.

In order to determine if they were causing problems, an “unrolled” 32-bit version of KECCAK was created

that removed the macros and inner loops. The results from this version are in the Table 3 rows marked “32x”

and shown in Figure 4. This step did have a significant improvement on performance and in fact doubled the

speed. A further improvement was to adapt the algorithm to use fixed location buffer pointers rather than

indexed arrays; and the results from the corresponding “32p” version show a further speed doubling

compared to the “32x”. However, this was still not enough to bring it into our target range. The best that

could be achieved for a single function was around 1.5 seconds. To get closer to practical use, we would need

an order of magnitude speed-up.

If we consider the unrolled KECCAK there are many shifts on array contents, however MEL does not have a

core shift instruction, but makes use of shift primitives (small functions) which may not be very efficient.

The reason that the unrolled version of KECCAK is twice as fast as the generic version is partly due to the

way that MULTOS handles shifts. If the number of places to shift is known at compile time (e.g. c = c << 3)

it handles it as a single use of the shift primitive, however if the shift appears to the compiler as a variable

(e.g. c = c << n) then the code will loop n times shifting by 1 bit at a time. This still leaves a big question

mark over the efficiency of the shift primitive itself (and indeed some other bitwise operations) and this

aspect could be investigated in follow-on work.

If we consider the x2 speed-up from pre-computing TOPC, the x2 from removing loops/macros and the x2

from using pointers, the application is x8 faster than the generic version we first tested. Normally this would

be cause for optimism, however the conclusion is still that the algorithm cannot meet the target performance

if loaded as an application on a card platform (MULTOS at least). This would suggest it is not practical to

add the algorithm to deployed or existing stock cards. To use a card platform, an API would need to be added

so that efficient/native code implementation could be called. Further work at the platform level might reveal

a speed-up, although an order of magnitude could be a challenge.

Given the performance issues, MULTOS code-size was hardly considered at all in the study, although it

could almost certainly be made to fit within our target requirements.

V1.0 15 of 19

ISG Smart Card Centre – Royal Holloway University of London

 5 Security Observations

The limited time scales and scope of this study did not permit detailed consideration of attack resistant

security aspects, however there are some practical observations that can be made. Firstly, running the

algorithm on the SLE78 would be expected to offer a reasonable degree of protection against physical, side

channel and fault attacks due to the innovative underlying hardware. Therefore the measured performance on

this platform ought to be achievable in a product implementation. The SLE77 would also offer some

hardware based protection, but this may need to be supplemented by additional measures in software, at the

expense of performance. Fortunately, the SLE77 appears more than fast enough and even if the performance

was degraded by a factor of perhaps as much as 10 times, we could still run f1, f2345 and f5s and meet the

overall performance target.

MULTOS platforms are known and marketed for their high security and had they been fast enough they

would have been expected to offer added OS security to compliment that of the underlying chip hardware.

However the current view is that a custom module will be needed for the algorithm and so the issues are

similar to the native SLE77/78.

 5.1 A Note on Timing Leakage/Attacks

Timing attacks can be possible when there are data dependent delays in the application. The timing variations

can be sufficiently large that they can be detected despite low level measures to disguise side-channel

leakage that might be subject to power analysis. The principle is quite simple:

if (variable equals TRUE)

{

 Do something time-consuming

}

else

{

 Do something quick

}

V1.0 16 of 19

ISG Smart Card Centre – Royal Holloway University of London

A brief inspection of KECCAK does not show any obvious high-level source of timing leakage, as there are

no branches in the code (like if statements). However, there could be some lower level leakage at the bit

manipulation level if rotates are used. For example a processor may effect a rotate by shifting the contents of

a register up one place and then testing the value that falls out of the register. If the value is '1' then this value

has to be added back in as the LSB, so unless the designer adds some dummy operation, processing a '1' is

going to take more time than a '0'.

The KECCAK example code has macros with names that imply rotate, but when the lines of code are

unrolled they can be seen as buffer value shift operations rather than register rotates. This does not mean we

are off the hook because there could be a similar effect when the compiled target size (8/16/32 bit) does not

match the underlying processor size. For example if we compile for 16-bits, but the CPU registers are only 8-

bits then our shift may need to modify the least significant bit of the upper byte based on the bit value shifted

out of the lower byte. In the case of native code implementation the developers would be expected to take the

CPU size/shift/rotate issue into account. For the platform approach (assuming it could be made fast enough)

the mapping between the application variable size and the underlying processor size is not so clear. It is

possible that for MULTOS the shift primitives have been well designed to avoid timing variations, but if this

cannot be determined then extra testing would be prudent.

It is worth noting that the various TUAK functions take roughly the same time, with variation caused by

input/output bit-processing, and so it would be feasible to give them near identical execution periods. A

technique used to obfuscate processing on platforms whose side-channel leakage protection is not too good,

is to run a function multiple times with the “real” run positioned randomly in the sequence, so the attacker

does not know where the “good” signals are. Because the TUAK functions all take about the same time the

attacker's task could be made even more difficult by mixing the repetitions of the different functions.

V1.0 17 of 19

ISG Smart Card Centre – Royal Holloway University of London

 6 Conclusions and Future Work

The main conclusion is that it is feasible to implement TUAK in software on typical smart card/SIM chips

and meet the performance target for 3G authentication algorithms. With respect to the set of questions

identified at the start of this note we can summarise:

Table 5: Answers to study questions

Question Answer Comment

a Is it possible to load the

algorithm onto an existing

deployed or stocked smart

card platform?

Yes In principle, but the card would need to know whether to run this algorithm

or say MILENAGE.

b If so, will the algorithm run

with acceptable

performance?

No On MULTOS it is too slow – really needs a x10 speed up.

(Java card results would be interesting; normally slower than MULTOS,

however might do better at the shifts and bitwise operations in KECCAK).

c Will a new SIM require a

crypto-coprocessor for

adequate performance?

No Software implementation is fine for performance.

d Will a new SIM need to

have a high performance

processor (e.g. 32-bit type)?

No The 16-bit cards tested have speed to spare; the algorithm might even be

quick enough on older and smaller CPUs.

e Will a new SIM require

specialist low-level

software support for the

algorithm?

Yes The algorithm should be developed and made available as an API/primitive

for card platforms (e.g. JAVA or MULTOS).

f Will the algorithm benefit

from security protection?

Maybe This is processor/platform specific. The SLE78 hardware should provide

quite a lot of protection. The SLE77 will provide some hardware protection,

but will need help from the software implementation.

A low-end chip might offer no security protection to the algorithm software.

A secure platform like MULTOS should offer some added attack protection

although this may be difficult to quantify.

Developers should be careful not to include bit-level timing dependencies in

the algorithm software.

There is spare time to add dummy functions if required.

V1.0 18 of 19

ISG Smart Card Centre – Royal Holloway University of London

This brief study has managed to answer its set questions, however there are a number of additional tasks that

would be logical for follow-on Work

• Port to Java Card

◦ Many SIMs in use today are based on Java Card platforms and so it would be very relevant to

implement the algorithm as an applet and measure its performance.

◦ It would be interesting to see how performance compares with the MULTOS platforms.

• Port to an older (Samsung) card type

◦ This would remove any manufacturer bias in the results and be representative of less modern

cards used in some markets.

• Analysis of platform performance

◦ Investigate the MULTOS implementation further and determine where performance losses occur

◦ This would be complemented by a similar study for the Java Card version.

• Initial side-channel leakage experiments

◦ It would be interesting to capture power signals from the different chips/cards/platforms for the

various target CPU size compilations, to see if there is any detectable structure and variation.

End of report

V1.0 19 of 19

	 1 Introduction
	 1.1 Interpreting the Requirements

	 2 The Experimental Setup
	 2.1 The Smart Card Chips
	 2.1.1 SLE77
	 2.1.2 SLE78

	 2.2 Software Development
	 2.2.1 Software Functional Testing

	 2.3 Performance Testing and Commands
	 2.3.1 APDU Test Commands

	 3 Results
	 3.1 Native card performance
	 3.2 MULTOS results

	 4 Analysis of Results
	 4.1 Performance Target
	 4.2 Native Mode
	 4.3 Platform Mode

	 5 Security Observations
	 5.1 A Note on Timing Leakage/Attacks

	 6 Conclusions and Future Work

