3GPP TSG SA WG3 (Security) Meeting #74 Bis
S3-140565
31 March – 2 April 2014 Sophia Antipolis (France)
revision of S3-140433
Source:
Samsung, Alcatel-Lucent, China Mobile, Qualcomm Incorporated
Title:
Security aspects of SCE architecture 1A
Document for:
Approval / Discussion

Agenda Item:
4.3
Work Item / Release:
LTE/SAE(SCE) / Rel-12
Abstract of the contribution: This contribution addresses the Key stream repetition issue due to DRB ID reuse.
1 Introduction:
This contribution presents a potential solution to avoid Key stream repetition issue due to DRB ID reuse.
2. Discussion
2.1. Background
In the SA3 LS to RAN2 (S3-140209) informed that “the counter is increased for every time a DRB set up procedure is run between the MeNB and an SeNB, and is transmitted from the MeNB to the UE in the RRC reconfiguration procedure.” . This triggered question from RAN2 for clarification (R2-140934) and SA3 started e-mail discussions on the same.

During SA3 e-mail discussion on RAN2 reply LS, it was pointed out that,

· If DRB-ID is reused between the S-eNB and UE for a S-KeNB, then it will lead to key stream re-use.

[image: image1.emf]Time

DRB1 is added

with S-K_eNB1

S-K_eNB1

K_UPenc

Algo ID, enc-type

Encrypt

COUNT

DRB ID 1

DIRECTION

DRB1 is released

DRB2 is added

with S-K_eNB1

S-K_eNB1

K_UPenc

Encrypt

COUNT

DRB ID 2

DIRECTION

Events in SeNB

Key derivations

and input to

EEA in SeNB

Algo ID, enc-type

Figure 2.1-1: Key stream repetition issue (cf. Eri_03_SCE_key_freshness_req-v2.doc)
· Solutions proposed are summarized below. Option 1 and Option 2, considers that the MeNB may send the same key to the SeNB second time and also further DRB-ID may also be re-used.
(cf. Eri_03_SCE_key_freshness_req-v2.doc: Figure 2 shows three events following each other in time from left to right. The top grey boxes shows the event that occurs, and the lower white boxes shows the key derivations that take place in the SeNB, given that the S-KeNB is received from the MeNB. In the first event, the MeNB runs an X2-AP SCG addition procedure and provides a fresh S-KeNB to the SeNB. In the next event the MeNB runs an X2 SeNB DRB release procedure with the SeNB. In the third event, the MeNB runs a second X2-AP SCG addition procedure and provides the same S-KeNB to the SeNB. Now, in this last step, if the DRB ID is re-used in the SeNB, there will be key-stream re-use.)
· Option 1: Generate new key for every SCG addition or modification that causes relates to the SeNB key(s) (independent of DRB ID assignment)

· New key is used by the newly added bearer(s)
· Existing bearers in the SeNB use the old key

· Option 2: Generate new key whenever DRB-IDs are about to be re-used

· New key is used by the newly added bearer(s)

· Existing bearer(s) in the SeNB use the old key
Observation 1: If simultaneously active DRBs on the same eNB use different KUPenc keys, then the number of keys maintained by the UE increases and this increases the complexity at the UE for security context maintenance.
2.2. Existing key stream re-use avoiding mechanism
The problem of key stream re-use within eNB is possible in the existing system, if the same DRB ID is assigning more than once within the lifetime of the KeNB. Currently the following procedures are followed to prevent key stream reuse and are specified in TS 36.331 (sub clause 5.3.1.2):

· To prevent key stream reuse due to PDCP COUNT reuse, for every packet count value is increased and if count is about to wrap around (to prevent same Key , Bearer ID and PDCP Count is re-used), current mechanism does Key refresh (which will reset the PDCP COUNT and new key is used).

· To prevent key stream reuse due to Bearer ID reuse (due to release and establishment of new RBs), eNB use different RB identities for successive RB establishments or does Key refresh if RB ID is exhausted.
Quick Reference: TS 36.331 (excerpt from section 5.3.1.2), “The eNB is responsible for avoiding reuse of the COUNT with the same RB identity and with the same KeNB, e.g. due to the transfer of large volumes of data, release and establishment of new RBs. In order to avoid such re-use, the eNB may e.g. use different RB identities for successive RB establishments, trigger an intra cell handover or an RRC_CONNECTED to RRC_IDLE to RRC_CONNECTED transition”.
Observation 2: Current eNB implementation addresses the key stream re-use issue when release and establishment of new RBs within the eNB in TS 36.331, by using different RB identities for successive RB establishment or by initiating key refresh procedure.
2.3. Re-using the legacy mechanism for Dual Connectivity
In line with the existing mechanism and without much change to the existing design principle, key stream reuse issue can be addressed as follows. The MeNB or SeNB (based on DRB ID assignment procedure) use different DRB-IDs (for example, say increments by 1 for every assignment) while successive offloading of the DRBs to the same SCG/SeNB or changing the S-KeNB if duplication of DRB-ID cannot be avoided. By doing so, at any point of time single key (KUPenc derived from S-KeNB) is used by all DRBs of a UE for the SCG context associated with a given SeNB. This means, MeNB (may be in consultation with SeNB, depends on DRB ID assignment procedure) ensures that at least one of the two parameters (S-KeNB or DRB-ID) is fresh when performing SCG addition/modification procedure.
Proposal 1: MeNB/SeNB implementation should assign different DRB-IDs for successive DRB offloading. MeNB/SeNB ensures that at least one of the two parameters (S-KeNB or DRB-ID) is fresh when performing SCG addition/modification procedure.
Proposal 2: If the DRB-IDs are about to be re-used (due to DRB ID exhaustion), then S-KeNB refresh is performed and the new key is used by the SeNB and the UE for all bearers of the UE associated with the SeNB .
Observation 3: Using the legacy mechanism is sufficient enough to address the security requirement for avoiding key stream repetition due to DRB-ID re-use for dual connectivity. We do not see any new issue/requirement for introducing new mechanism and to deviating from existing principles from using single key for protecting all DRBs of a UE between the UE and the SeNB.
2.4 High Level procedure
Note: The below figures (2.4-1 and 2.4-2) provide high level details. Exact message details and procedure depends on RAN2 decisions and message flows.
Scenario 1: If UE is offloaded to a SeNB at any point of time.

[image: image2.emf]UE

MeNB SeNB 1

2. X2-AP: SCGAdditionIndication

(DRB#1, S-KeNB1)

1. S-KeNB1 = KDF (KeNB1, SCC=1)

3. RRCConnectionReconfiguration

(SCC=1, DRB#1)

5. After sometime, MeNB decides to offload another DRB.and delete DRB#1

6. Avoid duplicating DRB-ID assignment.

7. X2-AP: SCGModificationIndication

(DRB#2 addition)

8. RRCConnectionReconfiguration

(DRB#2 addition)

9. After sometime, MeNB decides to release SCG.

10. X2-AP: SCGRelease

11. RRCConnectionReconfiguration(SeNB-1 release)

11. Deletes S-KeNB1

13. After sometime, MeNB decides to offload a DRB.

15. X2-AP: SCGAdditionIndication

(DRB#1, S-KeNB2)

14. Increment SCC count

S-KeNB2 = KDF (KeNB1, SCC=2)

16. RRCConnectionReconfiguration

(SCC=2, DRB#1)

19. X2-AP: SCGRelease

21. RRCConnectionReconfiguration(SeNB-1 release)

20. Deletes S-KeNB2

18. After sometime, MeNB decides to release SCG.

23. After sometime, MeNB decides to offload a DRB.

25. X2-AP: SCGAdditionIndication

(DRB#1, S-KeNB3)

24. Increment SCC count

S-KeNB3 = KDF (KeNB1, SCC=3

26. RRCConnectionReconfiguration

(SCC=3, DRB#1)

28. MeNB decides to offload anotherr 35 DRBs in sequence at different

time intervals and may also releases some bearer.

29. Avoid duplicating DRB-ID assignment.

30. X2-AP: SCGModificationIndication

(DRB#2)

31. RRCConnectionReconfiguration

(DRB#2)

32. DRB#27 and DRB#32 are active

33. Could not avoid duplicating DRB-ID assignment (due to

DRB ID exhausted).

34. X2-AP: SCGRelease

36. RRCConnectionReconfiguration (SeNB-1 release)

35. Deletes S-KeNB3

39. X2-AP: SCGAdditionIndication

(DRB#1, DRB#2, DRB#3, S-KeNB4)

38. S-KeNB4 = KDF (KeNB1, SCC=4)

40. RRCConnectionReconfiguration

(SCC=4, DRB#1, DRB#2, DRB#3)

4. Derives S-KeNB1

12. Deletes S-KeNB1

17. Derives S-KeNB2

22. Deletes S-KeNB2

27. Derives S-KeNB3

37. Deletes S-KeNB3

41. Derives S-KeNB4

0. MeNB decides to offload a DRB.

Initial offloading

DRB Addition / Deletion

SCG Release

Offloading with new Key

Key Refresh Procedure

7A. X2-AP: SCGModificationIndication

(DRB#1 deletion)

8B. RRCConnectionReconfiguration

(DRB#1 deletion)

Figure 2.4-1: Alternative scenarios of dual connectivity with a SeNB and mechanism for key handling
Step 0 to 1: The MeNB decides to perform dual connectivity with SeNB-1 for the UE. Then the MeNB derives S-KeNB1 by incrementing SCC=1.

Proposal 3: The Key freshness counter is incremented for every S-KeNB derivation
Step 2 to 4: provides high level details of X2-AP: SCG Addition procedure carrying the security parameters. DRB ID assignment is considered to be handled by MeNB and MeNB assigns different DRB IDs. The UE and the SeNB-1 derives KUPenc key to protect the user plane traffic between them.
Observation 4: Key stream reuse is avoided, either with the fresh S-KeNB or fresh DRB-ID.
Step 5 to 8: provides high level details of X2-AP: SCG Modification procedure carrying the security parameters. MeNB initiates the SCG Modification procedure to add DRB#2 in addition to DRB#1. For SCG Modification procedure, new key is not issued and old key (KUPenc, derived from S-KeNB1) is used for protecting both DRB#1 and DRB#2.
Proposal 4: S-KeNB is derived by the MeNB and forwarded to the SeNB only for the SCG addition procedure (first DRB offloading, X2-AP: SCG Addition Indication). For the successive DRB addition to the same SeNB (X2-AP: SCG Modification Indication), no new key is provided to the SeNB. At any point of time, only one key (KUPenc) derived from S-KeNB is used for protecting all the DRBs of a UE between the SeNB and the UE.
Step 9 to 12: provides high level details of X2-AP: SCG Release procedure carrying the security parameters. The MeNB initiates release procedure to release all resource in SeNB for the UE. Once the UE and the SeNB receives the SCG Release message, keys are deleted. Since SCG context is deleted any fresh offload will create a new SCG context with new S-KeNB and all the DRB-IDs (including those used in step 0 to Step8) become re-usable again.
Proposal 5: S-KeNB and corresponding KUPenc is deleted when SeNB/SCG release message is received from the MeNB by the UE and the SeNB.
Step 13 to 22: provides high level details of X2-AP: SCG Addition procedure carrying the security parameters followed by release procedure, after some time when MeNB decides to offload the UE to the same SeNB-1. As there is no context available (after step 12), the MeNB derives new S-KeNB2 by incrementing SCC and forwards the key to the SeNB and the SCC value to the UE. The UE and the SeNB-1 derives KUPenc key from S-KeNB2 to protect the user plane traffic between them. After the sometime, the MeNB decided to release the SeNB-1 for the UE. The MeNB initiates release procedure to release all resource in SeNB for the UE. Once the UE and the SeNB receives the SCG Release message, keys are deleted.

Step 23 to 41: provides high level details for the scenario where the MeNB could not assign different DRB IDs, due to exhaust of DRB IDs and perform key refresh procedure. The hypothetical scenario detailed here is: New DRBs are to be added (say around 35 new DRBs), so after the use of 32nd DRB ID, DRB-IDs get exhausted. So after (or near about) 32nd DRB ID use Key refresh procedure is triggered. After key refresh re-use of the DRB IDs become possible.
Observation 5: When different DRB IDs are assigned for every successive offloading of DRBs by the MeNB/SeNB, then possibility of re-using DRB ID is corner case. It is very uncommon scenario, that for the same S-KeNB (where KeNB is not changed) more than 32 times DRBs are offloaded for a UE. For this corner case also, it is always possible to performing key refresh procedure as to avoid DRB ID re-use, however it is expected to be performed very rarely.
Scenario 2: If the UE is offloaded to different SeNBs simultaneously
Note: Figure 2.4-2 is to show that the proposed mechanism is applicable for multiple SeNBs case (future-proofing). However whether multiple SeNBs scenario is in scope of Rel-12 or in Rel-13+ depends on RAN2 decisions. Although in our understanding, it is quite unlikely that more than one SeNB will be configured/used to one UE in the future due to the complexity of supporting more than two UL component carriers, still in this section we analyze the security solution with two SeNB’s configured in parallel.

[image: image3.emf]UE

MeNB SeNB-1

2. X2-AP: SCGAdditionIndication

(DRB#1, S-KeNB1)

1. S-KeNB1 = KDF (KeNB1, SCC=1)

3. RRCConnectionReconfiguration

(SCC=1, DRB#1)

14. After sometime, MeNB decides to release SeNB-1.

15

.

X2-AP

:

SCGRe

l

ease

(DRB#3)

16. RRCConnectionReconfiguration (SCG

release)

17. Deletes S-KeNB1

19. X2-AP: SCGRelease(DRB#2)

21. RRCConnectionReconfiguration (SCG

release)

20. Deletes S-KeNB2

19. After sometime, MeNB decides to release SeNB-2.

4. Derives S-KeNB1

18. Deletes S-KeNB1

22. Deletes S-KeNB2

SeNB-2

5. After sometime, MeNB decides to offload another bearer to SeNB-2

8. RRCConnectionReconfiguration

(SCC=2, DRB#2)

7. X2-AP: SCGAdditionIndication

(DRB#2, S-KeNB2)

6. Increment SCC count

S-KeNB2 = KDF (KeNB1, SCC=2)

9. Derives S-KeNB2

10. After sometime, MeNB decides to offload another bearer to SeNB-1.

11. Avoid duplicating DRB-ID assignment.

12. X2-AP: SCGModification

Indication(DRB#3) 13. RRCConnectionReconfiguration

(DRB#3)

Figure 2.4-2: Dual connectivity with different SeNB simultaneously and mechanism for key handling
Figure 2.4-2, shows unique S-KeNB is generated per SeNB, by incrementing the SCC count for every new S-KeNB derivation. As SCC provides freshness, PCI and EARFCN-DL is not needed for S-KeNB derivation.
3. Conclusion:

Key stream repetition due to DRB ID reuse can be avoided by assigning different DRB-IDs by the MeNB/S-eNB, as done in the existing systems. In worst case, if the DRB-IDs are about to be re-used, then S-KeNB refresh is performed and the new key is used by the SeNB for all bearers of the UE.
Following are the observation and proposal for SA3 to discuss and agree:

Observation 1: If simultaneously active DRBs on the same eNB use different KUPenc keys, then the number of keys maintained by the UE increases and this increases the complexity at the UE for security context maintenance.
Observation 2: Current eNB implementation addresses the key stream re-use issue when release and establishment of new RBs within the eNB in TS 36.331, by using different RB identities for successive RB establishment or by initiating key refresh procedure.

Observation 3: Using the legacy mechanism is sufficient enough to address the security requirement for avoiding key stream repetition due to DRB-ID re-use for dual connectivity. We do not see any new issue/requirement for introducing new mechanism and to deviating from existing principles from using single key for protecting all DRBs of a UE between the UE and the SeNB.

Observation 4: Key stream reuse is avoided, either with the fresh S-KeNB or fresh DRB-ID.

Observation 5: When different DRB IDs are assigned for every successive offloading of DRBs by the MeNB, then possibility of re-using DRB ID is corner case (cf. step 24 to 41 of 2.4-1). It is very uncommon scenario, that for the same S-KeNB (where KeNB is not changed) more than 32 times DRBs are offloaded for a UE. For this corner case also, it is always possible to performing key refresh procedure as to avoid DRB ID re-use, however it is expected to be performed very rarely.
Observation 6: When the DRB ID exhaustion is reached, this solution does not require a KeNB refresh procedure e.g intra cell handoff. Instead, the S-KeNB refresh can be done with the same KeNB and incremented value of the SCC.
4. Proposal
We propose SA3 to select the mechanism proposed in this contribution as the SA3 solution, with the following requisites:
1: MeNB/SeNB implementation should assign different DRB-IDs for successive DRB offloadings. MeNB ensures that at least one of the two parameters (S-KeNB or DRB-ID) is fresh when performing SCG addition/modification procedure.

2: If the DRB-IDs are about to be re-used (cannot be avoided due to DRB IDs exhaustion), then S-KeNB refresh is performed by incrementing the SCC, and the new key KUPenc is used by the SeNB and the UE for all bearers of the SCG context associated with this SeNB.

3: The Key freshness counter SCC is incremented for every S-KeNB derivation. When the SCC counter is about to wrap-around, the KeNB is refreshed.
4: S-KeNB is derived by the MeNB and forwarded to the SeNB only for the SCG addition procedure (first DRB offloading, X2-AP: SCG Addition Indication). For the successive DRB addition to the same SeNB (X2-AP: SCG Modification Indication), no new key is provided to the SeNB. At any point of time, only one key (KUPenc) derived from S-KeNB is used for protecting all the DRBs of a UE between the SeNB and the UE.

5: S-KeNB and corresponding KUPenc is deleted by the SeNB and the UE, when the SCG release message is received from the MeNB.

_1456813842.vsd
UE

MeNB

SeNB 1

11. Deletes S-KeNB1

2. X2-AP: SCG Addition Indication
(DRB#1, S-KeNB1)

1. S-KeNB1 = KDF (KeNB1, SCC=1)

3. RRCConnectionReconfiguration
(SCC=1, DRB#1)

5. After sometime, MeNB decides to offload another DRB.and delete DRB#1

6. Avoid duplicating DRB-ID assignment.

7. X2-AP: SCG Modification Indication
(DRB#2 addition)

8. RRCConnectionReconfiguration
(DRB#2 addition)

9. After sometime, MeNB decides to release SCG.

10. X2-AP: SCG Release

11. RRCConnectionReconfiguration(SeNB-1 release)

13. After sometime, MeNB decides to offload a DRB.

15. X2-AP: SCG Addition Indication
(DRB#1, S-KeNB2)

14. Increment SCC count
S-KeNB2 = KDF (KeNB1, SCC=2)

16. RRCConnectionReconfiguration
(SCC=2, DRB#1)

19. X2-AP: SCG Release

21. RRCConnectionReconfiguration(SeNB-1 release)

20. Deletes S-KeNB2

18. After sometime, MeNB decides to release SCG.

23. After sometime, MeNB decides to offload a DRB.

25. X2-AP: SCG Addition Indication
(DRB#1, S-KeNB3)

24. Increment SCC count
S-KeNB3 = KDF (KeNB1, SCC=3

26. RRCConnectionReconfiguration
(SCC=3, DRB#1)

28. MeNB decides to offload anotherr 35 DRBs in sequence at different time intervals and may also releases some bearer.

29. Avoid duplicating DRB-ID assignment.

30. X2-AP: SCG Modification Indication
(DRB#2)

31. RRCConnectionReconfiguration
(DRB#2)

32. DRB#27 and DRB#32 are active

33. Could not avoid duplicating DRB-ID assignment (due to DRB ID exhausted).

34. X2-AP: SCG Release

36. RRCConnectionReconfiguration (SeNB-1 release)

35. Deletes S-KeNB3

39. X2-AP: SCG Addition Indication
(DRB#1, DRB#2, DRB#3, S-KeNB4)

38. S-KeNB4 = KDF (KeNB1, SCC=4)

40. RRCConnectionReconfiguration
(SCC=4, DRB#1, DRB#2, DRB#3)

4. Derives S-KeNB1

12. Deletes S-KeNB1

17. Derives S-KeNB2

22. Deletes S-KeNB2

27. Derives S-KeNB3

37. Deletes S-KeNB3

41. Derives S-KeNB4

0. MeNB decides to offload a DRB.

Initial offloading

DRB Addition / Deletion

SCG Release

Offloading with new Key

Key Refresh Procedure

7A. X2-AP: SCG Modification Indication
(DRB#1 deletion)

8B. RRCConnectionReconfiguration
(DRB#1 deletion)

_1456832648.vsd
UE

MeNB

SeNB-1

17. Deletes S-KeNB1

2. X2-AP: SCG Addition Indication
(DRB#1, S-KeNB1)

1. S-KeNB1 = KDF (KeNB1, SCC=1)

3. RRCConnectionReconfiguration
(SCC=1, DRB#1)

10. After sometime, MeNB decides to offload another bearer to SeNB-1.

11. Avoid duplicating DRB-ID assignment.

12. X2-AP: SCG Modification Indication (DRB#3)

13. RRCConnectionReconfiguration
(DRB#3)

14. After sometime, MeNB decides to release SeNB-1.

15. X2-AP: SCG Release (DRB#3)

16. RRCConnectionReconfiguration (SCG release)

19. X2-AP: SCG Release (DRB#2)

21. RRCConnectionReconfiguration (SCG release)

20. Deletes S-KeNB2

19. After sometime, MeNB decides to release SeNB-2.

SeNB-2

5. After sometime, MeNB decides to offload another bearer to SeNB-2

8. RRCConnectionReconfiguration
(SCC=2, DRB#2)

7. X2-AP: SCG Addition Indication
(DRB#2, S-KeNB2)

6. Increment SCC count
S-KeNB2 = KDF (KeNB1, SCC=2)

9. Derives S-KeNB2

4. Derives S-KeNB1

18. Deletes S-KeNB1

22. Deletes S-KeNB2

_1456760642.vsd
Time

DRB1 is added with S-K_eNB1

S-K_eNB1

K_UPenc

Algo ID, enc-type

DRB1 is released

Events in SeNB

Key derivations and input to EEA in SeNB

Encrypt

COUNT
DRB ID 1
DIRECTION

Algo ID, enc-type

DRB2 is added with S-K_eNB1

S-K_eNB1

K_UPenc

Encrypt

COUNT
DRB ID 2
DIRECTION

