3GPP TR 33.871 V0.2.0 (2014-01)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Security for WebRTC IMS Client access to IMS;

 (Release 12)
[image: image1.jpg]

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Contents

4Foreword

1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4
Overview
7
4.1
WebRTC
7
4.1.1
Overview
7
4.1.2
WebRTC Control plane
7
4.1.3
WebRTC User plane
7
4.2
WebRTC IMS Client access to IMS
8
4.2.1
Overview
8
4.2.2
Architecture
8
5
Assumptions and Security requirements
8
5.1
Assumptions
8
5.1
Security requirements
8
6
Solutions
9
6.1
Authentication
9
6.1.1
Authentication of WebRTC IMS Client re-using existing IMS authentication mechanisms
9
6.1.1.1
General
9
6.1.1.2
Use of SIP Digest credentials
9
6.1.2
Authentication of WebRTC IMS Client using web credentials
11
6.1.2.1
General
11
6.1.2.2
Use of Trusted Node Authentication (TNA)
11
6.1.2.3
Solution with IMS AKA credentials
14
6.2
Enhancements to IMS media plane security
15
6.2.1
Media security for RTP
15
6.2.1.1
General
15
6.2.1.2
e2ae security for RTP using DTLS-SRTP
16
6.2.2
Media security for WebRTC Data Channels
17
6.2.2.1
General
17
6.2.2.2
e2ae security for WebRTC Data Channels
18
6.3
Other security aspects
19
6.3.1
Firewall traversal
19
7
Assessment of solutions
20
8
Conclusions and recommendations
20
Annex A (Informative): Secure usage of GBA with UE browser
21
Annex B: Profiling of DTLS-SRTP
25
Annex C: Change history
26

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The goal of WebRTC IMS Client access to IMS is to significantly expand the pool of clients able to access IMS. This document contains the study on security issues following the potential modifications of the IMS architecture and stage 2 procedures as required by the support of WebRTC IMS Client access to IMS.

For this purpose this document will address:

· WebRTC IMS Client authentication mechanisms, including the re-use of existing IMS authentication mechanisms from WebRTC IMS Clients

· Required enhancements to IMS media plane security

· Control plane security related aspects
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.228: "Service requirements for the Internet Protocol (IP) multimedia core network subsystem (IMS); Stage 1".
[3]
3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".
[4]
3GPP TR 23.701: "Study on the Support of WebRTC IMS Client access to IMS".
[5]
3GPP TS 33.203: "3G security; Access security for IP-based services".
[6]
3GPP TS 33.328: "IP Multimedia Subsystem (IMS) media plane security".
[7]
W3C Web Real-Time Communications Working Group,
http://www.w3.org/2011/04/webrtc-charter.html
[8]
IETF Real-Time Communication in WEB-browsers Working Group,
http://tools.ietf.org/wg/rtcweb/
[9]
IETF RFC 5763: " Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport Layer Security (DTLS)".

[10]
draft-ietf-rtcweb-security: "Security Considerations for WebRTC".
[11]
3GPP TS 33.823: "Security for usage of Generic Bootstrapping Architecture (GBA) with a User Equipment (UE) browser".
[12]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".
[13]
IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

[14]
IETF RFC 6750: "The OAuth 2.0 Authorization Framework: Bearer Token Usage".

[15]
3GPP TS 29.228: "IP Multimedia (IM) Subsystem Cx and Dx interfaces; Signalling flows and message contents".

[16]
3GPP TS 24.292: "IP Multimedia (IM) Core Network (CN) subsystem Centralized Services (ICS);Stage 3".
[17]
IETF RFC 5764: "Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)".
[18]
draft-ietf-rtcweb-data-protocol: "RTCWeb Data Channel Protocol ".

[19]
draft-ejzak-dispatch-webrtc-data-channel-sdpneg: "SDP-based WebRTC data channel negotiation".

[20]
RFC 6714: "Connection Establishment for Media Anchoring (CEMA) for the Message Session Relay Protocol (MSRP)".
3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply.
A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
Web Real-Time Communications (WebRTC): A set of browser extensions enabling web applications to define real-time services.

WebRTC IMS Client (WIC): A WebRTC-capable browser running a JavaScript application that allows a user to access IMS services.
3.2
Symbols

For the purposes of the present document, the following symbols apply:

Cx
Reference Point between a CSCF and an HSS.

Gm
Reference Point between a UE and a P‑CSCF or between an IP-PBX and a P‑CSCF.

Iq
Reference Point between the IMS Application Level Gateway (ALG) (IMS-ALG) and the IMS Access Gateway (IMS-AGW)

Mb
Reference Point between a UE and IP network services used for user data transport.

Mw
Reference Point between a CSCF and another CSCF.

W1
Reference Point between a WIC and WWSF.

W2
Reference Point between a WIC and eP-CSCF.

W3
Reference Point between a WIC and eIMS-AGW.

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

DTLS-SRTP
Datagram Transport Layer Security SRTP

eP-CSCF
P-CSCF enhanced for WebRTC
eIMS-AGW
IMS-AGW enhanced for WebRTC
ICE
Interactive Connectivity Establishment

NAT
Network Address Translation

P-CSCF
Proxy CSCF

RTP
Real-time Transport Protocol

S-CSCF
Serving CSCF

SDP
Session Description Protocol

SIP
Session Initiation Protocol

SRTP
Secure RTP

WebRTC
Web Real-Time Communication

WIC
WebRTC IMS Client
WWSF
WebRTC Web Server Function
4
Overview

4.1
WebRTC

4.1.1
Overview
Web Real-Time Communication (WebRTC) is specified by the W3C WebRTC WG [7] in collaboration with the IETF RTCWeb WG [8]. Although it is still work in progress, the technology has already been implemented in many different browsers. As W3C specifies the API and IETF the protocols, the IETF specifications are likely to be more relevant for the WebRTC IMS Client access to IMS work.

4.1.2
WebRTC Control plane

The WebRTC control plane is sent over HTTP/WebSocket and is controlled by the web application. While HTTP is a request-response protocol, WebSocket provides a full-duplex communication channel over TCP. The actual protocol is application-defined with a few requirements:

· SDP must be used with the following security requirements (see [10]):

· DTLS-SRTP must be used.

· ICE must be used.

This gives considerable flexibility, and as JavaScript is Turing complete, a WebRTC application can implement any signalling protocol, e.g. SIP and transport it over WebSocket.

4.1.3
WebRTC User plane

The WebRTC user plane consists of media channels for audio and video and data channels for peer-to-peer communication of arbitrary data. The user plane is controlled by the browser and therefore much more standardized. Some security relevant requirements (see [10]):

· All channels must use STUN/TURN/ICE.

· Media channels must use SRTP and DTLS-SRTP

· Data channels must use DTLS

An overview of the WebRTC protocol layers for the user plane can be seen in Figure 4.1.3-1.

[image: image3.emf]ICE

STUN SRTP DTLS

SCTP

Data

UDP1 UDP2 ...

Media

Figure 4.1.3-1: WebRTC user plane protocol layers

4.2
WebRTC IMS Client access to IMS

4.2.1
Overview

A WIC (WebRTC IMS Client) is a WebRTC-capable browser running a web application that allows a user to access IMS services. The web application (written in HTML/CSS/JavaScript) is offered by the IMS operator or by a third party. The support of WebRTC IMS Client access to IMS significantly expands the pool of clients able to access IMS.

The WebRTC client authenticates to the IMS via the WebRTC control plane function, using either traditional IMS credentials e.g., SIP Digest username/password, or some form of web credentials e.g., OAuth access token. In the latter case, the WebRTC control plane function will verify the web credentials and then authenticate to the IMS core on behalf of the user.

4.2.2
Architecture

Figure 4.2.2-1 shows the the architecture for WebRTC IMS Client access to IMS as described in TR 23.701 [4]. The WWSF (WebRTC web server function) is the first web server contacted by the user (generally by clicking on a link or entering a URL into the browser). The P-CSCF enhanced for WebRTC (eP-CSCF) is the endpoint for the signalling connection.

[image: image4.emf]WWSF

(IMS operator or 3rd

party web server)

IMS compatible

WebRTC-enabled

web application

WebRTC-enabled

browser

WIC

DTLS-SRTP + SRTP, DTLS

ICE + STUN cont. consent checks

eIMS-AGW

I/S-CSCF

IMS-ALG

eP-CSCF

Iq

HSS

Mw

Cx

SDP

RTP

W3

W

2

S

D

P

ov

e

r

H

T

T

P/

We

b

S

o

c

k

e

t

W1

Figure 4.2.2-1: Architecture of WebRTC IMS Client access to IMS

5
Assumptions and Security requirements

5.1
Assumptions

Editor’s Note: If needed, this clause will define the underlying assumptions of the work.

5.1
Security requirements

Requirements for Support of WebRTC IMS Client access to IMS are specified by SA1 in 3GPP TS 22.228 [2]. Additional potential architectural requirements identified by SA2 are stated in 3GPP TR 23.701 [5].

The following security requirements have been identified by SA3:
· REQ 1: An IMS service provider relying on a third party authentication service for WebRTC shall ensure that at most IMS subscribers that have granted that third party the right to register them to the IMS with one of their own IMS identities are impacted by a potential security breach affecting that third party.

· REQ 2: An IMS service provider should be able to identify and mitigate security anomalies or security breaches at one entity providing a third party authentication service selectively, without affecting clients associated with other entities providing a third party authentication service.
Editor’s Note: This clause will define additional potential security requirements.

6
Solutions

6.1
Authentication
Editor’s Note: This clause is split into two sub-clauses to reflect the use cases mentioned in SA1 TS 22.228 [2]
“The authentication of the subscriber can be performed via the WebRTC IMS Client or by a WebRTC server on behalf of a user.”

Editor’s Note: TR 23.701 describes a third authentication/registration solution in which the eP-CSCF acts as an IP-PBX in static mode of operation. Whether SA3 should study this solution as well depends on the outcome of the SA2 discussions. From a security perspective this solution appears similar to the solution described in 6.1.2.
Editor’s Note: SA3 must validate the registration scenarios and provide additional details related to security aspects of the architecture. In particular, SA3 should verify for all scenarios the security properties of at least the following aspects: the use of TLS, WSS and CORS at the relevant reference points; the use of IMS digest, TNA, and/or potentially other IMS authentication mechanisms; how to provide IMS digest authentication and registration information to the WIC; the required trust relationships between functional entities for the scenarios; and whether there are any constraints on network locations of the functional entities of the architecture in the scenarios.
Editor’s Note: The feasibility of the solutions should take into account the dependencies on the browser limitations.
6.1.1
Authentication of WebRTC IMS Client re-using existing IMS authentication mechanisms
6.1.1.1
General

Editor’s Note: It is assumed that the WebRTC IMS Client has access to IMS credentials and uses these to authenticate to the IMS.

In this scenario it is assumed that the user has a subscription with an individual IMPU and uses an IMS authentication mechanism (e.g., IMS digest) to authenticate with IMS. The eP-CSCF is assumed to relay the authentication information so that the message flows are unchanged.

Editor's Note: Access to the (U)SIM and the AKA algorithm from JavaScript is currently not supported in today's browsers (without requiring browser modifications or installation of proprietary plugins). It is ffs to use IMS AKA.
6.1.1.2
Use of SIP Digest credentials

In this scenario that the WebRTC IMS Client implements the SIP Digest algorithm and sends the authentication information to the eP-CSCF. The use of SIP Digest in IMS is specified in Annex N of TS 33.203 [5].

Figure 6.1.1.2-1 shows the registration flow. In this figure SIP over secure WebSocket is used between the WebRTC IMS Client and the eP-CSCF. Other protocols (e.g. HTTP RESTful or JSON over WebSocket) can also be used as long as it is able to relay the IMPI and the digest challenge, challenge-response, and auth-info values.
It is recommended to maintain a clear separation between WebRTC IMS Clients and regular IMS UEs. A user accessing IMS from a WebRTC IMS Client should be assigned a separate subscription in the HSS with a unique IMPI and SIP Digest password. In this way a compromised password will have an isolated impact and only affect the WebRTC IMS Client.

The solution requires that the IMPI and SIP Digest password are made available to the JavaScript in the WebRTC IMS Client.

The entities that have access to the IMPI and SIP Digest password, and thus needs to be trusted by the operator, are the user, the browser, the WWSF, and the IMS core network. SIP Ddigest is therefore only intended to be used when the WWSF is controlled by the operator or a 3rd party trusted by the operator.
NOTE 1:
It is assumed that the credentials are entered by the user via the web GUI or retrieved from the WWSF over HTTPS. Note that the latter option requires that WWSF has authenticated the user previously.
NOTE 2:
The use of SIP Digest breaks the 3GPP security requirement mandating IMS AKA to connect to IMS when using a 3GPP access network, see 3GPP TS 33.203.

[image: image6.emf]WebRTC IMS Client eP-CSCF I/S-CSCF

2. SIP Register IMPI

3. SIP 4xx digest-challenge

6. SIP Register digest-response

1. SIP Reg

ister IMPI

4. SIP 4xx digest-challe

nge

5. SIP Register digest-response

8. 2xx auth-info

SIP

WWSF

Web page down-

loaded over HTTPS

Establish secure WebSocket connection

7. SIP 2xx auth-info

Alternatives to SIP possible

Figure 6.1.1.2-1: WebRTC client authentication using SIP Digest
NOTE 3:
The eP-CSCF can verify that the web-page establishing the signalling connection comes from a trusted domain by inspecting the value of Origin header. This header is inserted by the browser in the WebSocket handshake and in every HTTP request (requires the use of CORS, http://www.w3.org/TR/cors/). The protection mechanism works under the assumption that the browser is not under the attacker's control, which means that the contents of the Origin header can be trusted.
6.1.2
Authentication of WebRTC IMS Client using web credentials
6.1.2.1
General

Editor’s Note: It is assumed that the user does not have access to IMS credentials and that the eP-CSCF authenticates to the IMS on behalf of the user. The user may use some other form of credentials to authenticate to the eP-CSCF.

In this scenario it is assumed that the user has a subscription with an individual IMPU but uses a web identity and authentication scheme to authenticate with a third party authentication service.
NOTE: The third party authentication service is the function that performs authentication of the user and provides the token to the user. This term does not imply anything about a function split among WWSF, authorization server, etc. in providing this service.
The third party authentication service in turn issues authentication information to the WebRTC IMS Client (WIC) that the WIC presents to the eP-CSCF. The WWSF assigns IMS identities to the user based on the user's web identity (e.g. via database lookup or other translation means). The eP-CSCF verifies the authentication information. Provided the validation of the authentication information is successful, the eP-CSCF performs the IMS registration on behalf of the user.

6.1.2.2
Use of Trusted Node Authentication (TNA)

The scenario allows applying Trusted Node Authentication (TNA) specified for IMS in Annex U of TS 33.203 [5]. While TNA was specified mainly for interworking with the CS access domain, the technology is access and protocol independent. The requirements include that the trusted node (i.e. eP-CSCF) can authenticate the user by means of authentication information received from the third party authentication services, that the trusted node can provide interworking between the IMS domain and the other domain, in which the WWSF resides, if necessary, and as the name applies, that the operator trusts the WWSF and the authentication provided by the third party authentication service. It is clear that the operator trusts the eP-CSCF, performing the role of trusted node in TNA, as the eP-CSCF resides in the operator network, according to TR 23.701.
Another supported use case is where the WWSF allocates IMS identities out of a pool (i.e. a set of IMS subscriptions owned by the WWSF). In this case the token may not be associated with the IMS subscription of the user behind the WIC (which be anonymous i.e. not authenticated). The token is sent to the WebRTC IMS Client which includes it in the initial registration request to the eP-CSCF. Provided the token verification is successful, the e-PCSCF will proceed with the IMS registration of the user using TNA.
The signalling flow for when the Trusted Node performs registration on behalf of the WebRTC IMS Client is shown in Figure 6.1.2.2-1. In this figure SIP over secure WebSocket is used between the WebRTC IMS Client and the eP-CSCF. Other protocols (e.g. HTTP RESTful or JSON over WebSocket) can also be used. The signalling between the Trusted Node and the rest of the IMS core is unchanged from the signalling flow in Annex U of TS 33.203 [5] in Figure 6.1.2.2-1. The REGISTER message may, however, have to be enhanced with an additional parameter to satisfy the requirements from clause 5 of the present report.
OAuth 2.0 [13] may be used an example authentication protocol between the WebRTC IMS Client and the eP-CSCF. In this protocol the WWSF first obtains an access token from an Authorization server which authorizes it to access the user's IMS account. The token is then sent to the WebRTC IMS Client which includes it in the initial registration request to the eP-CSCF. Provided the token verification is successful, the e-PCSCF will proceed with the IMS registration of the user using TNA.

The access token is associated with a specific user and WWSF and has a certain lifetime and scope. This authorization information can either be encoded into the token itself and verifiable through a signature or MAC (so called self-contained token), or retrieved as part of the validation response if the validation is performed against the Authorization server.

Editor’s Note: It is to be explained how the entities in the WebRTC access to IMS architecture map to the roles in the OAuth 2.0 framework.
NOTE 1:
In this release it is only the W2 interface that is specified; how the WWSF obtains the token and how it is made available to the WebRTC IMS Client is left out of scope.

NOTE 2:
In this release the token format and verification procedure is left out of scope. It is assumed that the eP-CSCF can check the validity of the token and obtain the IMPI, WWSF identity, lifetime, and scope parameters.

NOTE 3: To protect against token disclosure, the W1 and W2 interfaces must be integrity and confidentiality protected using TLS. This is a mandatory requirement in the OAuth bearer token specification [14].

[image: image7.emf]WebRTC IMS Client

Trusted Node

(eP-CSCF)

S-CSCF

5. SIP 200 (OK)

SIP Alternatives to SIP possible

WWSF

Web page down-

loaded over HTTPS

Establish secure WebSocket

connection

2. Validate access token and

determine user’s IMPI

6. SIP 200 (OK)

HSS

1. SIP REGISTER

Authorization: Bearer <access_token>

3. SIP REGISTER

Authorization: Digest username=<IMPI>,

integrity-protected="auth-done”,

response="", ...

4. Cx S-CSCF

Registration

Notification

Figure 6.1.2.2-1: Trusted Node performs registraton on behalf of the WebRTC client
The details of the signalling flows are as follows:

1. REGISTER request (WebRTC IMS Client to Trusted Node)

The WebRTC IMS Client establishes a secure WebSocket connection with the eP-CSCF and sends a REGISTER request. The Authorization header includes the OAuth 2.0 access token which the WebRTC IMS Client has previously obtained. The access token is of the so called "bearer" token type; see RFC 6750 [14].

NOTE 4:
OAuth bearer tokens can be used with signalling protocols that supports the Authorization header defined in RFC 2617, for example SIP and HTTP.

2. Validation of security token at eP-CSCF

The eP-CSCF extracts the access token and validates it in some unspecified manner. If the token is still valid the eP-CSCF obtains the associated authorization information, including the IMPIU of the associated user, the WWSF identity, and the token scope. The eP-CSCF verifies that the scope includes the value "webrtc-ims-client-access-to-ims".

NOTE 5:
The realm value "webrtc-ims-client-access-to-ims" is just a placeholder. The final syntax will be defined in the stage 3 specification.

3. REGISTER request (Trusted Node to S-CSCF)

Provided that the validation in the previous step was successful, the eP-CSCF replaces the Authorization header with a TNA Authorization header and forwards the request to the S-CSCF (via the I-CSCF). The format of the TNA Authorization header is specified in TS 24.292, Clause 6.2 [15], and contains, among others, the user’s IMPI, an integrity-protected directive set to auth-done, and an empty response directive.

4. Cx: S-CSCF Registration Notification

Based on the presence of the "integrity-protected" directive set to indicate that authentication has already been performed, the S-CSCF knows that the subscriber has already been authenticated by the Trusted Node. The S-CSCF informs the HSS that the user has been registered. Upon being requested by the S-CSCF, the HSS will also include the user profile in the response sent to the S-CSCF. For detailed message flows see TS 29.228 [16].

5. 200 (OK) response (S-CSCF to eP-CSCF)

The S-CSCF sends a 200 (OK) response to the eP-CSCF (via I-CSCF) indicating that Registration was successful.

Similar to the registration procedure for SIP Digest with TLS, the eP-CSCF associates the IMPI and all successfully registered IMPUs with the TLS Session ID when the 200 (OK) is received.

6. 200 (OK) response (eP-CSCF to WebRTC IMS Client)

The eP-CSCF forwards the 200 (OK) response to the WebRTC IMS Client indicating that Registration was successful.

NOTE 6:
The eP-CSCF can verify that the web-page establishing the signalling connection comes from a trusted domain by inspecting the value of Origin header. This header is inserted by the browser in the WebSocket handshake and in every HTTP request (requires the use of CORS, http://www.w3.org/TR/cors/). The protection mechanism works under the assumption that the browser is not under the attacker's control, which means that the contents of the Origin header can be trusted.
Editor’s Note: It is desirable for 3GPP to provide a security mechanism for the interface between WIC and eP CSCF in Rel-12, but it is ffs whether this goal can be achieved in Rel-12. Furthermore, it is ffs, which authentication mechanism to specify. It is also ffs whether this security mechanism should be mandatory to implement, but not mandatory to use, or whether it should just be an example security mechanism. It is agreed that, if SA2 does not provide a full specification of the signalling interface as mandatory to implement, then it only makes sense to have an example security mechanism in SA3. It is not intended to make it mandatory to use. The advantages of such a 3GPP-defined security mechanism for the interface between WIC and eP-CSCF would include ensuring interoperability between WICs and eP CSCFs from a security point of view and ensuring a minimum level of security.
Example countermeasures to satisfy REQ 1 from clause 5 are:

The two example countermeasures require that the third party WWSF is only authorized to assign IMS identities from a well-defined set of IMS subscribers that have chosen the option to access the IMS via this third party’s web authentication scheme. The countermeasures differ in the enforcement points:

· Control by eP-CSCFs: TR 23.701, Annex A.1.3.3, states: “The eP-CSCF verifies that the WWSF is authorized to allocate IMS identities that it assigns to a WIC.” This text suggests control by eP-CSCFs. In order to enable this verification all eP-CSCFs that may receive assertions (in the form of authorization tokens) issued by a certain third party authentication service have to be provided with the list of the IMS identities that a third party authentication service is authorized to assign. But, considering that several eP-CSCFs can receive assertions issued by one third party authentication service, one eP-CSCF can receive assertions issued by several third party authentication services operated by different third parties, and that these lists would have to be updated dynamically, this solution may be difficult to manage and not scale well. In view of these disadvantages one may want to look at using a different enforcement point, cf. next paragraph.

· Control by S-CSCF and HSS: For each IMS subscription, an HSS entry indicates, which third party authentication service is authorised to assign a given IMS identity. The HSS is the natural repository for subscription-related information. This information is sent to the S-CSCF over Cx during registration. The eP-CSCF sends the identity of the third party authentication service to the S-CSCF with the REGISTER message. The S-CSCF can then check whether the third party authentication service identities received from the eP-CSCF and the HSS respectively match.

Editor’s Note: The selection of the appropriate countermeasure is ffs.

The following Figure 6.1.2.2-2 shows an example registration flow illustrating the case when the control is enforced by S-CSCF and HSS. The new parameters are shown in red.

[image: image9.emf]eP-CSCF

1. REGISTER

(with token from WWSF)

S-CSCF HSS

2. REGISTER

(Trusted Node

Authentication, WWSF

identity, IMS user identity)

3. Cx-AuthDataReq

(IMS user identity)

4. Cx-AuthDataResp

(identities of WWSFs authorized

for this IMS subscription)

WIC

Compare, if no

match: reject

Figure 6.1.2.2-2: Example registration flow satisfying REQ 1

Example countermeasures to satisfy REQ 2 from clause 5 are:

· Control by eP-CSCFs: When a third party authentication service is under suspicion of a security breach an eP-CSCF can block all registration attempts involving assertions from that third party authentication service. All eP-CSCFs that can receive assertions from the third party authentication service under suspicion would have to be provided with the information, which third party authentication service to block.

· Control by S-CSCF and HSS: The eP-CSCF has to explicitly send the identity of the third party authentication service to the S-CSCF with the REGISTER message. (The mechanism from the countermeasures to satisfy REQ1 could be re-used.) Then the S-CSCF can block all registration attempts involving assertions from that third party authentication service. All involved S CSCFs would have to be provided with the information, which third party authentication service to block, either by OAM or from the HSS.

Editor’s Note: The selection of the appropriate countermeasure is ffs.
6.1.2.3
Solution with IMS AKA credentials

This is an example of web authentication for scenario 2. The solution relies on IMS AKA credentials thanks to GBA mechanism as defined in 3GPP TR 33.823 [11].

In this solution, it is assumed that:

· The UE re-uses IMS AKA credentials.

· The WebRTC IMS Client implements GBA features as defined in section 8.3.1 of 3GPP TR 33.823[11].

· The WWSF is a NAF that implements the associated GBA features described in section 8.3.1 of 3GPP TR 33.823[11].

[image: image10.emf]WebRTC

IMS

Client

WWSF

/ NAF

1. HTTPS tunnel

javascript code download, gba

authentication token, auth grant

assertion

2. Open secure WebSocket using CORS

3. REGISTER request with assertion

5. OK response

4. SIP REGISTER

eP-CSCF I/S-CSCF

BSF

Figure 6.1.2.3-1: WebRTC IMS Client authentication relying on IMS AKA credentials
1. From within a WebRTC-enabled browser, the user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The TLS connection provides one-way authentication of the server based on the server certificate. The browser downloads and initializes the WIC from the WWSF. The WWSF sends gba-related javascript code (gba.js) and authenticates the WIC by means of authentication token Ks_js_NAF, as described in Annex A of this document. After successful GBA-based authentication relying on IMS AKA credentials, the WWSF determines the IMPI and IMPU assigned to the user (e.g., via an LDAP query to an identity database {not shown} using the authenticated identity as key), issues a security token for the user (e.g., where the security token is a JSON Web Token) and returns the IMS identities as claims within the security token to the WIC.
Editor’s Note: it is for further study whether the WWSF could retrieve the IMPU and IMPI from the BSF.

2. The WIC opens a WSS connection to the eP-CSCF using CORS procedures to ensure that the WIC originated from a WWSF authorized to access this eP-CSCF.

3. The WIC sends a REGISTER request to the eP-CSCF via the WSS connection. The request includes the user identity extracted from the claims in the security token, as well as the security token received from the WWSF as an attachment to the request.

4. The eP-CSCF validates the contents of the security token and confirms that the IMS identities being registered are authorized by the security token. The eP-CSCF then forwards the authorized REGISTER request to IMS to initiate authentication-less IMS registration using TNA procedures, with an indication that the authentication has already been carried out.

5. IMS returns an OK response to the WIC to confirm the successful IMS registration.

6.2
Enhancements to IMS media plane security
Editor’s Note: This clause contains the needed Enhancements to IMS media plane security to support WebRTC IMS Clients, i.e. support of DTLS-SRTP.

6.2.1
Media security for RTP
6.2.1.1
General
According to [10], all RTP traffic generated or received by a WebRTC client must be protected with SRTP, using DTLS-SRTP as the key management protocol. This means that if a WebRTC IMS Client is supposed to be able to communicate with existing IMS endpoints (e.g. IMS UE or PSTN GW), DTLS-SRTP and SRTP must be terminated at an intermediate node.

This clause describes the additional procedures and interface extensions required to support end-to-access-edge (e2ae) security for RTP using DTLS-SRTP and SRTP.
Editor’s Note: The solution for e2ae security outlined in this clause only applies to network centric approach for WebRTC access to IMS. Whether SA3 should study the device centric approach as well (where transcoding and encryption/decryption is handled in the UE) depends on the outcome of the SA2 discussions.
6.2.1.2
e2ae security for RTP using DTLS-SRTP
E2ae protection of RTP using DTLS-SRTP is similar to e2ae protection of MSRP using TLS and the session establishment procedures are therefore largely the same. In both cases certificate fingerprints need to be exchanged over SDP and the media has to be anchored in IMS by inserting a gateway on the media path. Similarly as for e2ae protection using SDES and TLS, the signalling path between the WebRTC IMS Client and the eP-CSCF needs to be secured.
Figure 6.2.1.2-1 shows the originating procedure for e2ae protection of RTP using DTLS-SRTP. The terminating procedure is similar and is not shown here.

Note that no assumption is made on the interface between the WebRTC IMS client and the eP-CSCF except that it is SDP based and integrity protected.
Since only e2ae security is supported at the moment, the WebRTC IMS Client is required to include the indication "e2ae-security requested by UE" in every offer it creates.
It is assumed that the eP-CSCF is aware of the fact the IMS UE is a WebRTC IMS Client and automatically applies e2ae security for terminating calls. Therefore, unlike the existing e2ae security for RTP and MSRP, there is no need for the IMS UE to explicitly indicate support of e2ae security during registration.
NOTE: In this release, DTLS-SRTP is only intended to be used by WebRTC IMS Clients. Use of DTLS-SRTP by other types of IMS UEs may be studied in future releases.

The DTLS-SRTP profile to use is described in Annex B of this document.

[image: image11.emf]WebRTC

IMS Client

eP-CSCF eIMS-AGW S-CSCF

3. SDP offer

4. SDP answer

1. SDP offer

”e2ae-security requested by UE”

a=fingerprint: SHA-1 4A:AD:B9 ...

2. IMS Access GW interaction

(inclusion in the media path)

5. Media security setup

(transfer of fingerprints)

6. SDP answer

a=fingerprint: SHA-1 54:02:12 ...

9. DTLS-SRTP handshake

SRTP

Figure 6.2.1.2-1: E2ae protection of RTP based on DTLS-SRTP
6.2.2
Media security for WebRTC Data Channels

6.2.2.1
General

This clause describes how end-to-access-edge (e2ae) security is achieved for WebRTC Data Channels.

WebRTC-compatible browsers use SCTP over DTLS as transport protocol for peer-to-peer data. A WebRTC Data Channel is defined as two unidirectional SCTP streams, one in each direction, which are managed together as a single entity (see draft-ietf-rtcweb-data-protocol [18]). The application protocol which runs on top of the WebRTC Data Channel is not specified and the JavaScript is free to implement any protocol it requires.

The application protocols that a WebRTC IMS Client may need to support are MSRP, BFCP, T.140, and T.38. Figure 6.2.2.1-1 shows the common protocol stack and the required protocol translation. The transport protocol that the IMS-AGW applies on the remote side (marked X in the figure) depends on the application protocol. For MSRP and BFCP X=TCP, for T.140 X=RTP/UDP, and for T.38 X=UDPTL/UDP. In general the IMS-AGW will forward the application protocol messages transparently. The only exception is MSRP messages which contain IP address information and therefore needs to re-written by the IMS-AGW. This can however be avoided if both endpoint support the MSRP CEMA extension [20].

T.140 (real-time text) and T.38 (fax) are included here for sake of completeness. These are legacy protocols and are not expected to be commonly used.

Editor’s Note: The final list of supported application protocols (e.g., MSRP, BFCP, T.140, and T.38) is to be decided by CT groups.

[image: image12.emf]App. prot.

SCTP

DTLS

IP

App.prot.

SCTP

DTLS

IP

App.prot.

X

IP

UDP UDP

App. prot.

X

IP

WIC eIMS-AGW Peer

Figure 6.2.2.1-1: Protocol stack for WebRTC Data Channels

6.2.2.2
e2ae security for WebRTC Data Channels

E2ae security for WebRTC Data Channels is achieved in the same way as e2ae security for MSRP over TLS/TCP. In both cases certificate fingerprints need to be exchanged over SDP and the media has to be anchored in IMS by inserting a gateway on the media path. To ensure the integrity of the certificate fingerprint the signalling path is assumed to be protected.

Figure 6.2.2.2-1 shows the originating procedure for e2ae protection of WebRTC Data Channels. The terminating procedure is similar and is not shown here. Note that no assumptions are made on the interface between the WebRTC IMS Client and eP-CSCF except that it SDP based and integrity protected.

Since only e2ae security is supported at the moment, the WebRTC IMS Client is required to include the indication "e2ae-security requested by UE" in every offer it creates.

It is assumed that the eP-CSCF is aware of the fact the IMS UE is a WebRTC IMS Client and automatically applies e2ae security for terminating calls. Therefore, unlike the existing e2ae security for MSRP over TLS/TCP, there is no need for the IMS UE to indicate support of e2ae security during registration.

[image: image13.emf]WebRTC

IMS Client

eP-CSCF eIMS-AGW S-CSCF

3. SDP offer

4. SDP answer

1. SDP offer:

m=application 54111 DTLS/SCTP 5000

a=fingerprint: SHA-1 4A:AD:B9 …

a=3ge2ae:requested

a=sctpmap:5000 webrtc-datachannel 16

2. IMS Access GW interaction

(inclusion in the media path)

5. Media security setup

(transfer of fingerprints)

6. SDP answer:

m=application 62442 DTLS/SCTP 5001

a=fingerprint: SHA-1 54:02:12 …

a=sctpmap:5001 webrtc-datachannel 16

9. DTLS handshake

SCTP handshake

Application data (e.g. MSRP)

Figure 6.2.2.2-1: E2ae protection of WebRTC Data Channels

NOTE 1:
How the application protocol (e.g. MSRP) and the WebRTC DataChannel configuration (e.g. stream identifiers, reliable or unrealiable transmission, etc) are communicated to the remote endpoint is out-of-scope of this document and is left for the corresponding stage 3 specification. Whether this is done via SDP offer/answer as in draft-ejzak-dispatch-webrtc-data-channel-sdpneg [19], or using the in-band RTCWeb Data Channel Protocol defined in draft-ietf-rtcweb-data-protocol [18], has no relevance for security purposes.

NOTE 2:
Whether multiple WebRTC Data Channels are allowed to share the same SCTP association and DTLS connection is out-of-scope of this document and is left for the corresponding stage 3 specifications. The decision to this question is not considered to have any security impact.
6.3
Other security aspects

Editor’s Note: If needed, this clause contains study of other security aspects such as privacy, NAT/firewall traversal, control plane security aspects, , etc.
6.3.1
Firewall traversal

A Web RTC IMS Client (WIC) may face the same firewall traversal scenario where a restrictive firewall blocks UDP and only allow TLS/443 (HTTPS) and TCP/80 (HTTP) to pass, as described in TR 33.830. For signalling, because WIC always sends signalling over secure WebSocket, a restrictive firewall will not block signalling messages and there is no need for a firewall traversal solution. However, a restrictive firewall will block WebRTC media if WIC sends media over UDP or over TCP but not on port 80 or 443. Therefore a firewall traversal solution is needed for WebRTC media.

Editor’s note: firewall traversal including HTTP proxy case for WebRTC media is ffs.
7
Assessment of solutions
Editor’s Note: If needed, this clause will contain assessments of the various solutions.
8
Conclusions and recommendations
Editor’s Note: This clause will capture agreed conclusions and recommendations.
Annex A (Informative):
Secure usage of GBA with UE browser
This clause describes a sequence flow for secure usage of GBA with UE browser as described in clause 8.3.1 of TR 33.823 [11].

In this message flow the following architecture is assumed:

-
GBA Function: The GBA Function handles establishment of GBA-specific keys. In particular, the establishment of the key Ks can use any of the methods defined by TS 33.220 [12] (e.g. based on AKA or GBA_Digest). The GBA Function is not part of the web browser.

NOTE:
In the case of GBA_Digest, the GBA Function treats SIP Digest credentials as specified in Annex N of TS 33.203 [5].

-
Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

-
GBA_API: Part of the browser that communicates with the GBA Function and receives GBA authentication token material requests from the Javascript code.

-
Javascript: Downloaded Javascript code.

-
Engine: Sets up communication with the NAF.

[image: image14.emf]

NAF

Terminal

Browser

GBA API Javascript Engine

GBA Function

Credentials

Figure A-1: Example Architecture

Below is a sequence flow diagram of GBA usage in Web context, i.e. within Javascript.

[image: image15.emf]Nokia Internal Use Only

Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API javascript engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. J avascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B - TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11 . Obtain Ks_js_NAF by binding Ks _(ext)_NAF to the server authenticated TLS endpoint

12. Return Ks_js_NAF with B - TID and token expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B - TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B - TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tu nnel.

Figure A-2: Example sequence flow

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e. setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is "gba.js".

7. The web browser and the web server establish a server authenticated TLS session. The use of TLS message integrity is mandatory, while the use of TLS encryption is optional. All further messages between the web server and UE shall be sent through this tunnel.

8. The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

9. The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific authentication token Ks_js_NAF.
Example on how a GBA API call could look like:

document.gba.getGBAToken(successCallback, errorCallback);

10. As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

11. The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

12. The Javascript comes to a point where a call to GBA API is made.

13. Browser's Javascript GBA API locates the relevant information about the Javascript, i.e. in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

14. Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

15. The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

16. The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

17. Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific authentication token Ks_js_NAF that is bound to the server authenticated TLS session.
The values of the bindingType in GBAOptions are "tls-key-extractor" (i.e. RFC 5705 [4] is used with the label " TLS_MK_Extr ") and "tls-server-endpoint" (i.e. RFC 5929 [7] is used), then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr, tls-server-endpoint)

The tls-server-endpoint, tls-unique value and TLS_MK_Extr are all related to the TLS connection that established the TLS session in step 1.

18. Browser's Javascript GBA API returns Javascript specific Ks_js_NAF authentication token, B-TID and authentication token lifetime to the executing javascript.

19. The Javascript continues to execute and it uses the Ks_js_NAF authentication token the way the web server has instructed (via Javascript).

Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

var token = result.token;

var btid = result.btid;

var lifetime = result.expiryTime;

}

20. After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

21. The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one and validate that the TLS session is the same as was used for the request that established the TLS session in step 1.

22. If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).
Annex B:
Profiling of DTLS-SRTP

The present Annex contains a list of parameters that may be contained in the use_srtp extension in the DTLS extended client hello, according to RFC 5764 [17]. The rest of the DTLS profile is as defined in Annex M of TS 33.328 [6].

SRTP Protection Profiles:
The SRTP protection profile "AES_CM_128_HMAC_SHA1_80", as defined in RFC 5763, is mandatory to support. Support of other protection profiles is optional.

SRTP Master Key Identifier (MKI):
Optional to use and support. Since a DTLS-SRTP handshake results in single SRTP master key, an endpoint has at most one active master key at any point in time. MKI signalling is therefore typically not required (the major exception would be if the peers perform frequent re-keying) and is not recommended.
Annex C:
Change history
This is the last annex for TRs which details the change history using the following table.
This table can be used for recording progress during the WG drafting process till TSG approval of this TR.

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2013-11
	SA3#73
	
	
	
	Initial TR version
	-
	0.1.0

	2014-01
	SA3#74
	
	
	
	Updated according to SA3#74 decisions
	0.1.0
	0.2.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

_1449659692.vsd
WebRTC IMS Client

_1451794121.vsd
App. prot.

SCTP

DTLS

IP

App.prot.

SCTP

DTLS

IP

App.prot.

X

IP

UDP

UDP

App. prot.

X

IP

WIC

eIMS-AGW

Peer

_1451954978.doc
Nokia Internal Use Only

Nokia Internal Use Only

Nokia Internal Use Only

11. Obtain Ks_js_NAF by binding Ks_(ext)_NAF to the server authenticated TLS endpoint

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

1. Establish TLS Tunnel.

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

16. HTTP 200 OK

14. POST /validate HTTP/1.1

12. Return Ks_js_NAF with B-TID and token expiration time.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

10. Return Ks_(ext)_NAF and B-TID.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

6. Javascript execution comes to the point where javascript GBA API is called.

5. Downloaded gba.js is executed in javascript engine.

3. Send javascript code (gba.js) that contains javascript GBA API usage.

4. HTTP 200 OK (gba.js)

2. GET /gba.js HTTP/1.1

engine

javascript

GBA API

Web server (NAF)

GBA Function

Web browser (Ua application)

Nokia Internal Use Only

Nokia Internal Use Only

Nokia Internal Use Only

_1451957046.vsd
eP-CSCF

I/S-CSCF

WebRTC IMS Client

WWSF
/ NAF

1. HTTPS tunnel
javascript code download, gba authentication token, auth grant assertion

2. Open secure WebSocket using CORS

3. REGISTER request with assertion

5. OK response

4. SIP REGISTER

BSF

_1451954939.doc

Credentials

GBA Function

Engine

Javascript

GBA API

Browser

Terminal

NAF

_1450796740.vsd
HSS

2. REGISTER
(Trusted Node Authentication, WWSF identity, IMS user identity)

eP-CSCF

Compare, if no match: reject

1. REGISTER (with token from WWSF)

3. Cx-AuthDataReq
(IMS user identity)

4. Cx-AuthDataResp
(identities of WWSFs authorized for this IMS subscription)

S-CSCF

WIC

_1445969337.vsd
WebRTC IMS Client

_1445965935.vsd
WebRTC  IMS Client

