3GPP TSG SA WG3 (Security) Meeting #73
S3-140073
20-24 January 2014; Taipei, Taiwan

revision of
Source:
InterDigital

Title:
PCR to 33.895: Section 8.4.2.3 – generalization of local authentication for GBA_U
Document for:
Approval

Agenda Item:
8.1
Work Item / Release:
FS_SSO_int/Rel-12
This PCR proposes modifications in Section 8.4.2.3 to allow generalized local user authentication and authorization
1. Background
Mobile equipment manufacturers are placing various means of authentication of the local user to the ME on newer mobile terminals. One of the recent examples is the deployment of fingerprint reader in the newly-released iPhone 5S. The use of low-entropy PIN for local user authentication to the ME is being gradually replaced by other, higher grade means of authentication. Section 8.4.2.2, describing GBA_ME-based solution, has been already modified to reflect more generalized ways of authentication and authorization. This PCR proposes to modify Section 8.4.2.3 text and figure to the likeness of Section 8.4.2 to allow generalized local user authentication and authorization for GBA_U based solution.
2. PCR

*********** Begin Change *******************

8.4.2.3
GBA_U-based solution

By local user authentication, the UICC can locally confirm that the authorized user is present. For instance, the GAA server may present a dialog box to the user asking to authorize that application "Bank.com" can use GBA authentication. The GAA server computes and sends to the UICC the hash of the NonceUI concatenated with the user answer.

If and only if the UICC application has locally authenticated the user, the UICC derives new type of NAF keys which are bound to the ongoing transaction by taking the NonceUI in the NAF key derivation. It should be noted that the result of the local user authentication (e.g. a PIN) is not taken into the NAF key derivation. Instead, the UICC is a tamper resistant device in the User Equipment which, in addition to performing bootstrapping and deriving NAF keys for applications, is trusted to perform local user authentication when the GAA client indicates that local user authentication is needed. If the GAA client does not indicate that local user authentication is needed, the UICC derives the regular NAF keys. This approach avoids the burden and complexity of the user authentication credentials synchronization, e.g. a PIN, with the network.
The GAA client uses the received NAF keys for authentication in the Ua application protocol. The NAF requests the NAF keys from the BSF and includes the NonceUI in the Zn request and gets the same NAF keys as the GAA client did.

[image: image2.emf]7. –Verifies that user

authorization is given,

and derive Ks_Ext/Int_NAF-

UI = KDF(Ks, Nonce-UI, ...)

-Stores Ks_int_NAF-UI

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

2. Ua application answer (auth

challenge, Nonce-UI)

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication

resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI,

...)

13. Derive Ks_ext/int_NAF-UI

= KDF(Ks, Nonce-UI, ...)

14. NAF key response (Ks_ext/

int_NAF-UI)

15. Verify auth resp with

Ks_ext/int_NAF-UI

16. Ok

3. Get NAF keys (Nonce-UI)

6. GBA_U NAF derivation procedure

(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends(Ks_ext_NAF-UI)

4, 5. Local user authentication and

authorization

Figure 8.4.2.3.-1: Using User consent for GBA_U

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the local GAA server requests for local user’s authentication and authorization (e.g. a PIN, UID/password, etc.) to derive the NAF keys for this GAA client.

Editor's Note: It is for further study if and how NAF policy could be taken into account in the local user authentication.
5. The local user provides authentication response/authorization (e.g. PIN, UID/password, etc.)
6. The GAA server in the terminal sends GBA_U NAF Derivation procedure to the UICC application including as additional parameters the NonceUI and hash value of the user’s authorization (e.g. a PIN) concatenated NonceUI (Hash (NonceUI || user authz)) .

7. The UICC verifies that the user is authorized, e.g. the provided user credential (e.g., PIN UID/password, etc.) is correct by retrieving the user authorization value already stored on the UICC to compute the corresponding Hash value (NonceUI || user authz) and compare it with hash value sent by the GAA server as input data of the GBA_U NAF derivation procedure. If the user authorization was given, the UICC application derives NAF keys using NonceUI as an input in the following way Ks_ext/int_NAF-UI = KDF(Ks, NonceUI , …), where Ks_ext/int_NAF-UI derivation takes the same input as Ks_ext/int_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6. The UICC stores Ks_int_NAF-UI.

NOTE: The user authorization reference value is stored as TLV (Tag Length Value) object in a file of the UICC protected by Access Conditions.The usage of TLV object lets open the type and format of the user authorization value (e.g. PIN) that could be chosen. The user authorization reference value could be set by the user and stored in the UICC by the GAA server.
8. The UICC sends back to the GAA server Ks_ext_NAF-UI

9. The GAA server provides Ks_ext_NAF-UI to the GAA client.

10. The GAA client uses the Ks_ext_NAF-UI as the key to calculate the authentication response for the Ua application request.

11. The GAA client sends the Ua application request to the NAF.

12. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

13. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_ext/int_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

14. The BSF sends Zn response with Ks_ext/int_NAF-UI to the NAF.

15. The NAF uses the received Ks_ext_NAF-UI to verify authentication response received from the GAA client in step 11.

16. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

 The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_U to illustrate how the mechanism works.

Note that trusted platform is required for deployment of GAA Server and GAA Client in ME, to fulfill the requirements of TR 33.905[12]. The definition of such trusted platform is outside of 3GPP scope.

In addition, an appropriate protocol for negotiation UE-supported local user authentication capabilities vs. required by the NAF authentication capabilities may be needed.

Editor’s Note: The need and definition of such negotiation protocol is for further study.
*********** End Change *******************

3. Conclusion

It is proposed to agree on the above PCR to TR 33.sso.
_1444568842.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

14. NAF key response (Ks_ext/int_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

15. Verify auth resp with Ks_ext/int_NAF-UI

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth challenge, Nonce-UI)

7. – Verifies that user authorization is given,
and derive Ks_Ext/Int_NAF-UI = KDF(Ks, Nonce-UI, ...)
- Stores Ks_int_NAF-UI

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI, ...)

13. Derive Ks_ext/int_NAF-UI = KDF(Ks, Nonce-UI, ...)

16. Ok

6. GBA_U NAF derivation procedure
(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends (Ks_ext_NAF-UI)

_1450680406.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

14. NAF key response (Ks_ext/int_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

4, 5. Local user authentication and authorization

15. Verify auth resp with Ks_ext/int_NAF-UI

2. Ua application answer (auth challenge, Nonce-UI)

7. – Verifies that user authorization is given,
and derive Ks_Ext/Int_NAF-UI = KDF(Ks, Nonce-UI, ...)
- Stores Ks_int_NAF-UI

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI, ...)

13. Derive Ks_ext/int_NAF-UI = KDF(Ks, Nonce-UI, ...)

16. Ok

6. GBA_U NAF derivation procedure
(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends (Ks_ext_NAF-UI)

