3GPP TSG SA WG3 (Security) Meeting #74
S3-140214
20-24 January 2014; Taipei(Taiwan) 

revision of S3-130124
Source:
Gemalto, Morpho Cards
Title:
WebRTC IMS Client authentication: re-use of IMS credentials
Document for:
Approval 
Agenda Item:
7.1.2
Work Item / Release:
WebRTC / Rel-12
Abstract of the contribution: Pseudo-CR that enables the reuse of IMS AKA credentials for WebRTC IMS Client authentication 
1. Introduction
In the scope of WebRTC IMS Client authentication covered by 3GPP TR 33.abc “Security study for WebRTC IMC Client access to IMS”, the use of IMS AKA credentials from the browser is described as ffs. This contribution proposes solution relying on IMS AKA-based credentials. 
2. Analysis

This section aims to propose a solution taking into account the following aspects:

· 3GPP SA2 architecture for WebRTC IMS Client access to IMS
SA2 architecture as described in 3GPP TR 33.abc:
[image: image1.emf]WWSF

(IMS operator or 3rd 

party web server)

IMS compatible 

WebRTC-enabled 

web application

WebRTC-enabled 

browser

WIC

DTLS-SRTP + SRTP, DTLS

ICE + STUN cont. consent checks

eIMS-AGW

I/S-CSCF

IMS-ALG

eP-CSCF

Iq

HSS

Mw

Cx

SDP

RTP

W3

W

2

S

D

P

 

o

v

e

r

 

H

T

T

P

/

W

e

b

S

o

c

k

e

t

W1


· 3GPP security requirement for IMS 
3GPP security requirement mandates IMS AKA to connect to IMS when using 3GPP Access network. 

· Use of IMS AKA credentials
During last meeting, questions were raised regarding possible methods to use IMS AKA credentials from User Equipment browser. 
3GPP TR 33.823 on “Security for usage of GBA with User Equipment (UE) browser”, Rel-12, describes how GBA credentials can be used securely with UE browser using javascript. GBA credentials are obtained thanks to UMTS or IMS AKA authentication performed during the GBA bootstrapping phase, as specified in 3GPP TS 33.220. 


[image: image2.emf] 

  

NAF 

Terminal 

Browser 

GBA API Javascript Engine 

GBA Function 

Credentials 


Consequently, the usage of solution defined in TR 33.823 clause 8.3.1 “sequence flow with channel binding”, enables the usage IMS AKA credentials for WebRTC authentication. 

· Proposed solution  
Annex A of 3GPP TR 23.701 v12.0.0 captures the decisions reached in Rel-12 as a result of the study and provides source text that can be used for CRs. 

Taking into account the SA2 WIC registration described in Annex A.2.1.3 of 3GPP TR 23.701 v12.0.0 and sequence flow described in section 8.3.1 of 3GPP TR 33.823, a solution relying on IMS AKA credentials for WebRTC IMS Client authentication (WIC) is proposed with following features: 

· The WWSF plays the role of NAF as described in TR 33.823. 

· The WWSF delivers GBA javascript code (gba.js) to the WIC in addition to the data downloaded to the WIC. 

· The web authentication performed by the WWSF, as described in the step 1 of section A.2.1.3, is replaced by the authentication mechanism relying on Ks_js_NAF and B-TID defined in TR 33.823 section 8.3.1. 
· This solution relying on IMS AKA credentials can also be extended to GBA_Digest. In this context, the solution addresses common IMS with IMS AKA credentials used when accessing IMS via 3GPP access network, and SIP Digest credentials used when accessing IMS via non-3GPP access network. 
· It is for further study whether the WWSF could retrieve the IMPU and IMPI from the BSF.

· In normative phase of WIC authentication, the flow sequence defined in clause 8.3.1 of TR 33.823 should become normative. 

· The WebRTC IMS Client should implement a GBA Function and GBA API as described in TR 33.823.
· For ease of reading, the flow sequence of clause 8.3.1 of TR 33.823 is provided in Informative Annex of TR 33.abc on “Security for WebRTC IMS Client access to IMS”. 

· Advantages of the solution  
This solution:

· Reuses IMS AKA credentials when accessing IMS via a 3GPP access network. It fulfils 3GPP IMS security requirement. 

· Offers with IMS AKA credentials a higher security level than solution relying on SIP Digest credentials. 

· Perfect fits for SA2 architecture defining WebRTC access to IMS. The solution takes place and updates only step 1 of flow sequence described in section A.2.1.3 of TR 23.703.
· Does not require any user involvement. 

· Allows having a WebRTC IMS Client authentication for Common IMS that relies on IMS credentials

· IMS AKA credentials are used by the WebRTC IMS Client when accessing IMS via 3GPP access networks

· SIP Digest credentials are used by the WebRTC IMS Client when accessing IMS via 3GPP access networks

3. Proposal: pseudo-CR to 3GPP TR 33.abc on Security for WebRTC 

************************************ START of 1st CHANGE *************************************

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.228: "Service requirements for the Internet Protocol (IP) multimedia core network subsystem (IMS); Stage 1".
[3]
3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".
[4]
3GPP TR 23.701: "Study on the Support of WebRTC IMS Client access to IMS".
[5]
3GPP TS 33.203: "3G security; Access security for IP-based services".
[6]
3GPP TS 33.328: "IP Multimedia Subsystem (IMS) media plane security".
[7]
W3C Web Real-Time Communications Working Group,
http://www.w3.org/2011/04/webrtc-charter.html
[8]
IETF Real-Time Communication in WEB-browsers Working Group,
http://tools.ietf.org/wg/rtcweb/
[9]
IETF RFC 5763: " Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport Layer Security (DTLS)".

[10]
draft-ietf-rtcweb-security: "Security Considerations for WebRTC".
[5]
3GPP TR 33.823: "Security for usage of Generic Bootstrapping Architecture (GBA) with a User Equipment (UE) browser”
************************************ END of 1st CHANGE *************************************

************************************ START of 2nd CHANGE *************************************

6
Solutions

6.1
Authentication

Editor’s Note: This clause is split into two sub-clauses to reflect the use cases mentioned in SA1 TS 22.228 [2]
“The authentication of the subscriber can be performed via the WebRTC IMS Client or by a WebRTC server on behalf of a user.”

Editor’s Note: TR 23.701 describes a third authentication/registration solution in which the eP-CSCF acts as an IP-PBX in static mode of operation. Whether SA3 should study this solution as well depends on the outcome of the SA2 discussions. From a security  perspective this solution appears similar to the solution described in 6.1.2.

Editor’s Note: SA3 must validate the registration scenarios and provide additional details related to security aspects of the architecture. In particular, SA3 should verify for all scenarios the security properties of at least the following aspects: the use of TLS, WSS and CORS at the relevant reference points; the use of IMS digest, TNA, and/or potentially other IMS authentication mechanisms; how to provide IMS digest authentication and registration information to the WIC; the required trust relationships between functional entities for the scenarios; and whether there are any constraints on network locations of the functional entities of the architecture in the scenarios.

Editor’s Note: The feasibility of the solutions should take into account the dependencies on the browser limitations.
************************************ END of 2nd CHANGE *************************************

************************************ START of 3rd CHANGE *************************************

6.1.2.x
Solution with IMS AKA credentials

This is an example of web authentication for scenario 2. The solution relies on IMS AKA credentials thanks to GBA mechanism as defined in 3GPP TR 33.823 [xx].
In this solution, it is assumed that:
·  The UE re-uses IMS AKA credentials. 

· The WebRTC IMS Client implements GBA features as defined in section 8.3.1 of 3GPP TR 33.823[xx]. 
· The WWSF is a NAF that implements the associated GBA features described in section 8.3.1 of 3GPP TR 33.823[xx]. 

[image: image3.emf]WebRTC 

IMS 

Client

WWSF

/ NAF

1. HTTPS tunnel 

javascript code download, gba  

authentication token, auth grant 

assertion

2. Open secure WebSocket using CORS

3. REGISTER request with assertion

5. OK response

4. SIP REGISTER

eP-CSCFI/S-CSCF

BSF


Figure 6.1.1.x-1:  WebRTC IMS Client authentication relying on IMS AKA credentials
1.
From within a WebRTC-enabled browser, the user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The TLS connection provides one-way authentication of the server based on the server certificate. The browser downloads and initializes the WIC from the WWSF. The WWSF sends gba-related javascript code (gba.js) and authenticates the WIC by means of authentication token Ks_js_NAF, as described in Annex X of this document.  After successful GBA-based authentication relying on IMS AKA credentials, the WWSF determines the IMPI and IMPU assigned to the user (e.g., via an LDAP query to an identity database {not shown} using the authenticated identity as key), issues a security token for the user (e.g., where the security token is a JSON Web Token) and returns the IMS identities as claims within the security token to the WIC.
Editor’s NOTE: it is for further study whether the WWSF could retrieve the IMPU and IMPI from the BSF.
2.
The WIC opens a WSS connection to the eP-CSCF using CORS procedures to ensure that the WIC originated from a WWSF authorized to access this eP-CSCF.

3.
The WIC sends a REGISTER request to the eP-CSCF via the WSS connection. The request includes the user identity extracted from the claims in the security token, as well as the security token received from the WWSF as an attachment to the request.

4.
The eP-CSCF validates the contents of the security token and confirms that the IMS identities being registered are authorized by the security token. The eP-CSCF then forwards the authorized REGISTER request to IMS to initiate authentication-less IMS registration using TNA procedures, with an indication that the authentication has already been carried out.

5.
IMS returns a OK response to the WIC to confirm the successful IMS registration.
************************************ END of 2nd CHANGE *************************************

************************************ START of 3rd CHANGE *************************************
Informative Annex X: 

Secure usage of GBA with UE browser 

This clause describes a sequence flow for secure usage of GBA with UE browser as described in clause 8.3.1 of TR 33.823 [xx]. 
In this message flow the following architecture is assumed:

-
GBA Function: The GBA Function handles establishment of GBA-specific keys. In particular, the establishment of the key Ks can use any of the methods defined by TS 33.220 [2] (e.g. based on AKA or GBA_Digest). The GBA Function is not part of the web browser.

NOTE:
In the case of GBA_Digest, the GBA Function treats SIP Digest credentials as specified in Annex N of TS 33.203 [9].

-
Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

-
GBA_API: Part of the browser that communicates with the GBA Function and receives GBA authentication token material requests from the Javascript code.

-
Javascript: Downloaded Javascript code.

-
Engine: Sets up communication with the NAF.


[image: image4.emf] 

  

NAF 

Terminal 

Browser 

GBA API Javascript Engine 

GBA Function 

Credentials 


Figure X-1: Example Architecture

Below is an sequence flow diagram of GBA usage in Web context, i.e. within Javascript.


[image: image5.emf]Nokia Internal Use Only   

Web browser (Ua application)  

GBA Function 

Web server 

(NAF) 

GBA API javascript engine 

2. GET /gba.js HTTP/1.1 

4. HTTP 200 OK (gba.js) 

3. Send javascript code (gba.js) 

that contains javascript GBA API 

usage. 

5. Downloaded gba.js is executed in javascript engine.  

6. Javascript execution comes to the point where javascript GBA API is called.  

7. Javascript GBA API 

generates a request with normal 

Ks_(ext)_NAF key derivation 

input parameters.  

10. Return Ks_(ext)_NAF and B-TID.  

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol 

identifier.  

9. Bootstrap with BSF if 

cached Ks is not available. 

Generate Ks_(ext)_NAF. 

11. Obtain Ks_js_NAF by 

binding Ks_(ext)_NAF to the  

server authenticated TLS 

endpoint  

 

12. Return Ks_js_NAF with B-TID and token expiration time.  

13. Continue javascript execution and 

use Ks_js_NAF.  Then make 

XMLHttpRequest call to web server 

with Ks_js_NAF and B-TID. 

14. POST /validate HTTP/1.1 

16. HTTP 200 OK 

15. Web server request Ks_(ext)_NAF from the 

BSF using the B-TID, and then generates 

Ks_js_NAF as in step 11.  It then validates the 

incoming request with Ks_js_NAF.  

1. Establish TLS Tunnel. 


Figure X-2: Example sequence flow

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e. setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is "gba.js".

1.
The web browser and the web server establish a server authenticated TLS session. The use of TLS message integrity is mandatory, while the use of TLS encryption is optional. All further messages between the web server and UE shall be sent through this tunnel.
2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific authentication token Ks_js_NAF.


Example on how a GBA API call could look like:



document.gba.getGBAToken(successCallback,



                       errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript comes to a point where a call to GBA API is made.

7.
Browser's Javascript GBA API locates the relevant information about the Javascript, i.e. in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific authentication token Ks_js_NAF that is bound to the server authenticated TLS session.
The values of the bindingType in GBAOptions are "tls-key-extractor" (i.e. RFC 5705 [4] is used with the label " TLS_MK_Extr ") and "tls-server-endpoint" (i.e. RFC 5929 [7] is used), then Ks_js_NAF is derived as:


Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr, tls-server-endpoint )


The tls-server-endpoint, tls-unique value and TLS_MK_Extr are all related to the TLS connection that established the TLS session in step 1.

12.
Browser's Javascript GBA API returns Javascript specific Ks_js_NAF authentication token, B-TID and authentication token lifetime to the executing javascript.

13.
The Javascript continues to execute and it uses the Ks_js_NAF authentication token the way the web server has instructed (via Javascript).


Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).



function successCallback(result) {



   var token = result.token;



   var btid = result.btid;



   var lifetime = result.expiryTime;



}

14.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one and validate that the TLS session is the same as was used for the request that established the TLS session in step 1.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

*********************************** END of CHANGE *************************************

_1450699157.doc


Credentials





GBA Function





Engine





Javascript





GBA API





Browser





Terminal





NAF





 









_1451721033.vsd
eP-CSCF


I/S-CSCF


WebRTC IMS Client


WWSF
/ NAF


1. HTTPS tunnel 
javascript code download, gba  authentication token, auth grant assertion


2. Open secure WebSocket using CORS


3. REGISTER request with assertion


5. OK response


4. SIP REGISTER


BSF



_1416216928.doc


Credentials





GBA Function





Engine





Javascript





GBA API





Browser





Terminal





NAF





 









_1422686332.doc
Nokia Internal Use Only

Nokia Internal Use Only

Nokia Internal Use Only





11. Obtain Ks_js_NAF by binding Ks_(ext)_NAF to the  server authenticated TLS endpoint 








9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.





13. Continue javascript execution and use Ks_js_NAF.  Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.





1. Establish TLS Tunnel.





15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11.  It then validates the incoming request with Ks_js_NAF.





16. HTTP 200 OK





14. POST /validate HTTP/1.1





12. Return Ks_js_NAF with B-TID and token expiration time. 





8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier. 





10. Return Ks_(ext)_NAF and B-TID. 





7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters. 





6. Javascript execution comes to the point where javascript GBA API is called.





5. Downloaded gba.js is executed in javascript engine.





3. Send javascript code (gba.js) that contains javascript GBA API usage.





4. HTTP 200 OK (gba.js)





2. GET /gba.js HTTP/1.1





engine





javascript





GBA API





Web server (NAF)





GBA Function





Web browser (Ua application)








Nokia Internal Use Only

Nokia Internal Use Only

Nokia Internal Use Only




