3GPP TSG SA WG3 (Security) Meeting #71
S3-130367
Valencia, Spain; 8 -12 April, 2013

revision of S3-12abcd
Source:
Nokia Corporation, Nokia Siemens Networks, Ericsson, ST-Ericsson
Title:
Discussion of channel binding for GBA_Digest and GBA_Web 
Document for:



Discussion




Agenda Item:
7.5.1 GBA 
Work Item / Release:
Rel-11, 12
Abstract of the contribution:
This contribution discusses the usefulness of channel binding for GBA_Digest and GBA_Web. It concludes that channel binding is not useful for GBA_Digest, but could strengthen the GBA_Web protocol. Three companion contributions are provided: a CR in S3-130368 adding to the security considerations for GBA_Digest in TR 33.804 and explaining that channel binding is not useful for GBA_Digest, a CR to 33.222 in S3-130327, which implements channel binding for GBA_Web by combining the two options in S3-130204 (agreed at SA3#70), and a CR to 33.823 in S3-130330 adding to the security considerations for GBA_Web.
1. Introduction
At SA3#70, the CR to TS 33.222 in S3-130204 was agreed. It contained two options for channel binding in its clauses D.1.3.2 and D.1.3.3. These two options provide alternative ways of binding the TLS channel between a GBA_Web client and a NAF server to the authentication token Ks_js_NAF, which is sent from the client to the NAF server.

Further thinking about these two options has led the authors to conclude that the GBA_Web protocol would indeed be strengthened by combining the two options into one by using as inputs to the derivation of Ks_js_NAF both TLS_MK_Extr (a value extracted from the TLS master key) and a channel bindings value according to RFC 5929, cf. below. An additional benefit of the new approach would be a simplification by the elimination of options. 
Channel binding is defined in RFC 5056 as follows:

“Channel binding: the process of establishing that no man-in-the-

      middle exists between two end-points that have been authenticated

      at one network layer but are using a secure channel at a lower

      network layer. ”.

To explain this definition by an example: when integrity protection is provided by TLS, but authentication is provided at the application layer, then channel binding ensures that a piece of data that is integrity-protected by TLS is sent by the same end-point that was authenticated at the application layer. 

RFC 5056 also defines the term ‘channel bindings’ [Note the difference to ‘channel binding’!] as follows:
“Channel bindings: [...]

         Generally, some data that "names" a channel or one or both of

         its end-points such that if this data can be shown, at a higher

         network layer, to be the same at both ends of a channel, then

         there are no MITMs between the two end-points at that higher

         network layer.”

For the example of TLS, RFC 5929 defines three forms of channel bindings, called ‘channel binding types’, of which one only applies to TELNET and is omitted here. The other two are: 
· tls-unique value: the date here is “The first TLS Finished message sent (…) in the most recent TLS handshake of the TLS connection being bound to”.
· tls-server-endpoint: the date here is “The hash of the TLS server's certificate”.
2. Channel binding and GBA_Web
The GBA_Web protocol, as described in S3-130204, (which is, by the way, a protocol on the Ua interface and can work with any variant of a protocol on the Ub interface) sends the authentication token Ks_js_NAF from the client to the server over the TLS channel. The server will process the client’s request only if it can verify the authentication token. 

The use of a channel binding type, as defined in RFC 5929, could help to prevent the following attack scenario: 
In RFC 5705 “Keying Material Exporters for Transport Layer Security (TLS)”, the security considerations section sketches an attack where a man-in-the-middle (mitm) between a client and a genuine server can force the use of the same TLS master key on two TLS connections: a TLS connection between the client and the mitm, and another TLS connection between the mitm and the server. Assumptions for this attack to work include that the mitm is in possession of the private key corresponding to a forged certificate with the name of the genuine server, that the TLS cipher suite includes key transport for the TLS handshake, and that some protocol interleaving is used to establish the two TLS connections. 

If such an attack was applied to GBA_Web, the mitm could obtain the authentication token Ks_js_NAF and hence impersonate the client towards the server and have content of the attacker’s choice executed by the server (because the mitm also knows the TLS master key and can hence send HTTP requests to the server correctly protected by TLS). The use of  one of the channel binding types ‘tls-unique value’ or ‘tls-server-endpoint’ would prevent this attack as the forged certificate is different from the genuine server certificate and the TLS finished messages are different for the two TLS connections; consequently the UE and the genuine NAF server would compute different Ks_js_NAF values. 
In order to further reduce the options, we suggest specifying the tls-server-endpoint as the channel binding type as it seems much simpler to implement and yet offer the same degree of security for GBA_Web. (The difference would be that tls-unique value provides binding to a TLS connection while tls-server-endpoint only provides binding to a TLS session, but this seems to make no difference in thwarting the above mitm attack.)

NOTE: Channel binding helps when a forged certificate can be obtained from a compromised Certificate Authority for the same server name, but a different private-public key pair as then the genuine and the forged certificates differ. If the genuine private server key had leaked somehow then the attacker could use the genuine certificate, and neither channel binding method would help to detect the mitm attack. 
Note further that it is still useful to use TLS_MK_Extr as a further input to the derivation of Ks_js_NAF for the following reason: one of the protocols on the Ub interface, with which GBA_Web can be used, is GBA_Digest, which uses a fixed password as part of the user credentials. The use of TLS_MK_Extr, which is a secret value (not known to the attacker at least as long as the TLS server certificate cannot be forged), then helps to prevent codebook attacks against weakly chosen passwords in the same way as for GBA_Digest. In contrast, the data ‘tls-unique value’ or ‘tls-server-endpoint’ are publicly known and would therefore not help (decisively) against these codebook attacks.
3. Channel binding and GBA_Digest

Overview of GBA_Digest (to refresh your memory, for details cf. TS 33.220, M.6.3): 

The GBA_Digest protocol, as defined in Annex M of TS 33.220, has two security goals: 

· The establishment of a mutually authenticated key Ks between UE and BSF; 

· The integrity-protected provision of data (Ks lifetime, B-TID) by the BSF to the UE. 

The GBA_Digest protocol uses TLS_MK_Extr as input to deriving two types of keys: 

· passwd = KDF (H(A1), "GBA_Digest_RESP", TLS_MK_Extr)

· Ks = KDF (H(A1), "GBA_Digest_Ks", TLS_MK_Extr, RESP)

Here, passwd is a dynamically generated password used with HTTP Digest (RFC 2617) where HTTP Digest is used to authenticate the UE to the BSF over the TLS connection. The BSF is authenticated to the UE through a TLS server certificate and, additionally, through HTTP Digest (Authentication-info header).

Ks is the key used to derive Ks_NAF in the same way as for the other GBA variants defined in TS 33.220. 
The integrity-protected provision of data is ensured by the use of qop=auth-int in HTTP Digest. 

The purpose of using TLS in GBA_Digest is preventing codebook attacks against weakly chosen passwords and, as a secondary goal, providing Perfect Forward Secrecy, as explained in TR 33.804, clause 7.2.4. 
Channel binding 

Would the use of channel binding types as in RFC 5929 be able to further strengthen the GBA_Digest protocol? We argue here that this is not the case. 

The channel bindings as in RFC 5929 could be used to provide further input to the derivation of passwd and Ks. As passwd is used to compute the authentication-info header and the message authentication code on the message body of the response from the BSF to the UE, the UE could indeed detect in this way the mitm attack described in section 2 of the present contribution. 
However, the mitm could still not do any harm if he could not modify the message body of the response from the BSF: the mitm would then act as a mere pass-through instance, and the UE could still rest assured that the data (Ks lifetime, B-TID) were indeed sent by the BSF. On the other hand, if the mitm was also able to forge the message authentication code provided by HTTP Digest with qop=auth-int then the attacker would not need to perform the – rather tricky – mitm attack at all. The attacker could then achieve his goals by just engaging with the UE in a run of GBA_Digest using the forged TLS server certificate (that the attacker has at his disposal by assumption). Therefore, the use of channel bindings as in RFC 5929 would not strengthen the integrity-protected provision of data by the BSF to the UE. 
Would the use of channel binding types as in RFC 5929 be able to further strengthen the protection against codebook attacks? No, it would not achieve this either as the UE first sends an Authorization header using the password and a server-selected nonce as input before receiving any information from the server that would allow the UE to authenticate the server in addition to the TLS server authentication (which the UE could not rely on as, by assumption, there is a forged TLS server certificate). Therefore, an attacker with a forged TLS server certificate at his disposal could obtain data from the UE derived from parameters that are all known to the attacker with the exception of the long-time password itself and use this data for codebook attacks, even when channel binding was used. 
Note that the same argument would not apply with respect to TLS encryption as HTTP Digest only provides integrity, not encryption. So, a mitm with a forged BSF certificate performing the attack described in section 2 could read, though not modify, information that was sent encrypted between UE and BSF. However, the exchange of confidential information is not part of the GBA_Digest protocol (nor is it, by the way, part of the GBA_ME or GBA_U protocols). 
It is true that there is NOTE 2 in TS 33.220, M.6.3, which reads “TLS encryption can be useful for protecting the user identity privacy when the TMPI mechanism defined in the present document is not used.” But the UE would send the IMPI before it could detect the presence of the mitm through channel binding, so the only thing channel binding could prevent was that the mitm could link IMPI and B-TID. But, when the TMPI mechanism is not used, this linking is something any eavesdropper can do for GBA_ME or GBA_U without a mitm attack. We think it would not be justified to introduce channel binding in GBA_Digest for providing stronger identity protection than for GBA_ME or GBA_U. If identity protection is sought then the TMPI mechanism is the method of choice in all cases.
4. Proposal
It is proposed to agree the companion CRs to TR 33.804, TR 33.823 and TS 33.222 in S3-130368, S3-130330, and S3-130327. 
















































