Page 1

3GPP TSG-SA3 Meeting #71
(
S3-130327
Valencia, Spain, 8-12 April 2013

revision of S3-130abc
	CR-Form-v10

	CHANGE REQUEST

	

	(

	33.222
	CR
	0048
	(

rev
	-
	(

Current version:
	12.1.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/Change-Requests.

	

	Proposed change affects: (

	UICC apps(

	
	ME
	x
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Combination of Channel Binding Methods

	
	

	Source to WG:
(

	Nokia Corporation, Nokia Siemens Networks

	Source to TSG:
(

	S3

	
	

	Work item code:
(

	Web_GBA
	
	Date: (

	2013-04-01

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	The investigation (cf. accompanying discussion paper) on the benefits of a combination of both channel binding approaches revealed that there are cases, where the combination strengthens the security model.

	
	

	Summary of change:
(

	Combination of both channel binding methods. Removal of corresponding editor’s note.

	
	

	Consequences if
(

not approved:
	Two options specified, where the combination of both would provide better security.

	
	

	Clauses affected:
(

	D.1.3, D.2.1

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(

	

START CHANGE
D.1.3
Channel binding

D.1.3.1 Background

To mitigate the threats described in Annex C, a second level of key derivation is introduced. When Javascript code that is downloaded from the web server via the server authenticated TLS tunnel requests for a GBA based key, the request is first handled by the web browser and more specifically the GBA API module in the web browser. The GBA API module will request the Ks_(ext)_NAF key from the GBA Function in the ME using the Javascript specific NAF_ID as specified in clause D.1.2. After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API will derive a Javascript specific authentication token Ks_js_NAF that is bound to the server authenticated TLS tunnel.

The channel binding is performed using RFC 5705 [x] and RFC 5929 [25], as is described below. An example sequence flow is in clause D.2.1.

D.1.3.2 Channel binding using RFC 5705 and RFC 5929
After receiving the Ks_(ext)_NAF key from the GBA Function the GBA API obtains the TLS_MK_Extr, which is extracted from the TLS master key using the exporter function as specified in RFC 5705 [x]. The label for the exporter function shall be "EXPORTER_3GPP_GBA_WEB". The GBA API obtains the tls-server-endpoint as specified in RFC 5929 [25]. The Ks_js_NAF shall be derived from Ks_(ext)_NAF as follows:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr, tls-server-endpoint)

Editor's note:
The label "EXPORTER_3GPP_GBA_WEB" for the exporter function needs to be registered with IANA.

A sequence flow is in clause D.2.1.

NEXT CHANGE

D.2.1
Sequence flow with channel binding

In this message flow with channel binding the following architecture is assumed:

· GBA Function: The GBA Function handles establishment of GBA-specific keys. In particular, the establishment of the key Ks can use any of the methods defined by TS 33.220 [3] (e.g., based on AKA or GBA_Digest). The GBA Function is not part of the web browser.

NOTE:
In the case of GBA_Digest, the GBA Function treats SIP Digest credentials as specified in Annex N of TS 33.203 [28].
· Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

· GBA_API: Part of the browser that communicates with the GBA Function and receives GBA authentication token material requests from the Javascript code.

· Javascript: Downloaded Javascript code.

· Engine: Sets up communication with the NAF.

[image: image1.emf]NAF

Terminal

Browser

GBA APIJavascriptEngine

GBA Function

Credentials

Figure D.2-1.Architecture

Below is a sequence flow diagram of GBA usage in Web context, i.e., within Javascript.

[image: image3]
Figure D.2-2. Sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading an html page where one of the linked Javascript resources is "gba.js".

1)
The web browser and the web server establish a server authenticated TLS session.

2)
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3)
The web server now knows that it can use the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific authentication token Ks_js_NAF.

Editor’s note:
The definition of the GBA API details needs to be done, ffs if this happens in W3C or 3GPP SA3, depending on communication with them.

The GBA API is:

document.gba.getGBAToken(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript comes to a point where a call to GBA API is made.

7.
Browser's Javascript GBA API locates the relevant information about the Javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF, the NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific authentication token Ks_js_NAF that is bound to the server authenticated TLS session as follows:

The valuse of the bindingType in GBAOptions are "tls-key-extractor" (i.e. RFC 5705 is used with the label "EXPORTER_3GPP_GBA_WEB") and tls-server-endpoint (i.e. RFC 5929 [25]). The Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr, tls-server-endpoint)

The tls-server-endpoint value and TLS_MK_Extr are all related to the TLS connection that established the TLS session in step 1.

12.
Browser's Javascript GBA API returns Javascript specific Ks_js_NAF authentication token, B-TID and authentication token lifetime to the executing javascript.

13.
The Javascript continues to execute and it uses the Ks_js_NAF authentication token the way the web server has instructed (via Javascript).

Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var token = result.token;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one and validate that the TLS session is the same as was used for the request that established the TLS session in step 1.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

END CHANGE

Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. javascript code (gba.js) that contains javascript GBA API usage can now be used.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding Ks_(ext)_NAF to the server authenticated TLS endpoint

12. Return Ks_js_NAF with B-TID and token expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark appropriate boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Office® 2003 applications. Prefered format is ISO standard yyyy-MM-dd.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1387101755.vsd
NAF

Terminal

Browser

GBA API

Javascript

Engine

GBA Function

Credentials

_1424178618.doc

[image: image1]

Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. javascript code (gba.js) that contains javascript GBA API usage can now be used.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using either RFC 5705 or RFC 5929

12. Return Ks_js_NAF with B-TID and token expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

