3GPP TSG-SA3 (Security)
S3-120706
SA3#68, 9-13. July, 2012; Bratislava, Slovakia
revision of S3-12xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Key usage
Document for:
Discussion and Approval
Agenda Item:
7.5.1
Work Item / Release:
Web GBA
1. Introduction
This pseudo-change request discusses the usage of key handles for the different keys:
Usage of Ks_js_NAF

The Ks_js_NAF key is a JavaScript specific key. The browser can utilize this key directly e.g. usage as a one-time password. The browser must be able to have direct access in clear to the key to be able to insert it into the HTML form. The usage of a handle would prevent such usage as the browser would then not be able to fill in the form properly.
Usage of Ks_(ext)_NAF

For the Ks_(ext)_NAF the usage of a handle would prevent that the key is used in clear, as the usage would require access to a secure hardware module containing the actual Ks_(ext)_NAF key. This would add a substantial requirement to the GBA implementations and supporting device hardware. For the case that the Ks_(ext)_NAF key is used in one terminal, then there is no security difference, if one uses the key directly or a handle instead. For the case, that the browser is compromised and the Ks_(ext)_NAF key is from exported there and may be distributed to other devices and used there, but this can be prevented from the server side.
===== BEGIN CHANGE =====
4.2
Objectives

The document has the following objectives for the usage of GBA in web browsers:

-
There will be cryptographic key separation between different applications using GBA (e.g. MBMS, Presence, browser banking application, browser e-mail application, etc). For non-browser based applications, this is already in use in generic GBA architecture with the usage of NAF specific keys Ks_(ext/int)_NAF with the usage of NAF_Ids and protocol identifiers.

-
The NAF specific keys for the use of GBA in web browsers will be protected from man-in-the-middle attacks.

-
The GBA keys will be bound to the existing session between the browser and the web server in such a way that the keys cannot be reused in another session or reused by another entity.

Editor’s Note: Definition of session need to be added.
-
The access to NAF specific keys by JavaScript will be restricted in such a way that a web page executing a Javascript in a web browser will have access to the NAF specific keys that it is authorized to have access to. For instance, same origin policy could be used so that a Javascript will have access to only that NAF specific key that belongs to same origin (e.g. a web page loaded from http://www.3gpp.org/ will have access to only the NAF specific key of www.3gpp.org and not be able to request keys for another origin).

===== NEXT CHANGE =====
5.2
Threats
The usage scenarios described in clause 5.1 are susceptible to three serious threats:
Threat 1:
ME downloads a web page from an attacker that has Javascript which requests all NAF specific keys that is interested in.

Threat 2:
ME uses a public access point that is controlled by attacker, i.e., classic man-in-the-middle attack. When the ME requests the login page from the service provider, the attacker sends back a rogue login web page as it controls the DNS. This rogue login page has Javascript that is able to extract any NAF specific key of the service provider, and send it back to the attacker.
Threat 3:
It is possible for any third party on the internet connection to eavesdrop on the B-TID and the Ks_NAF, and impersonate the user as long as the B-TID has not expired.

Threat 4:
If an attacker gets hold of the Ks_js_NAF, then he can utilize it to attack the communication between web browser and the NAF.

===== NEXT CHANGE =====
6.4
Control Mechanism 4 – Key Usage

In Threat 4 in clause 5.2, the attacker may get hold of the Ks_js_NAF by one of the following means:

· One of the endpoints can be considered as compromised and the Ks_js_NAF is compromised i.e. NAF or web browser are compromised.

· Ks_(ext)_NAF and key derivation parameters are compromised.

The compromise of an endpoint might be made more difficult by usage of additional hardware functionalities, but those would require that all communication for usage of such keys would be routed over the secure hardware. This would still leave the challenge, how to ensure that no fake traffic is routed over the secure hardware. The handle used to authorize the usage of the Ks_js_NAF key inside the secure module need to be secured to avoid unauthorized usage, but that would require a trustworthy browser, which then negates the effect of using a handle for keys. . The usage of the Ks_js_NAF keys should be done in the TLS tunnel that was used to create the key. This makes usage in another TLS tunnel impossible, as long as the end points check that the TLS tunnel used to receive the information is the same as was used to derive the keys.
If the compromised key has been derived, by usage of the compromised Ks_(ext)_NAF and corresponding parameters, then usage of additional secure hardware would not gain any significant security improvement for the usage from the key origin terminal, since the source of the js-key is compromised.
