3GPP TSG SA WG3 (Security) Meeting #68
S3-120666
9-13 July 2012; Bratislava,Slovakia

revision of S3-12abcd
Source:
Gemalto
Title:
Usage of GBA with UE browser: some comments
Document for:
Approval
Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
Abstract of the contribution:

In the scope of the study on the security for usage of GBA with a UE browser, this contribution provides some comments to SA3 TR 33.823 to be discussed during SA3#68 meeting. Some comments could be included in TR 33.823 as editor’s notes.
1. Introduction
TR 33.823 addresses the security for usage of GBA with a UE browser. This contribution provides some comments to the proposed solutions that could be taken into consideration for new version of the TR 33.823.
2. Some comments
Usage scenario

In usage scenarios description and example of sequence flow, the B-TID and NAF specific key are sent to the web server as username and password. This kind of example may be too simple since many security threats exist for such a scenario. The B-TID and NAF specific key are static during the key lifetime of the NAF key; there is no challenge/response in the proposed example.
Control Mechanisms in section 6
· Control Mechanism 2

This control mechanism is not sufficient to solve the problem since attacker website could have a fake certificate, which is possible in several ways, e.g. compromised CA, weak certificate, as mentioned in clause 6.3 (Control Mechanism 3)

FQDN
FQDN checking seems the right thing to do. But asking a generic web browser to check an application specific Javascript function is very difficult to do if not impossible. 3GPP must convince the browser maker to do so.
An alternative is that the GBA API module in the web browser does the checking. In this way, the browser makers do not need to do app specific stuff.

GBA API

In cryptographic API, ideally cryptographic keys should not be exported. Exporting keys may be reasonable for certain use cases and under certain conditions. For example, when encrypting a large data file and the encryption key is randomly generated for one time use. For operations such as authentication, the key should remain inside the entity, which is capable of handling the required crypto operations of the cryptographic API.
Alternative:

Could we imagine a new scenario where, instead of providing a NAF key to the web browser, the GBA API would return the result of cryptographic operation involving the NAF key and a challenge sent by the web browser, this result would be sent to the web browser. The web browser could perform the same cryptographic operation and compare it with the value sent by the UE. This scenario would also address concern raised in first comment (usage scenario).
W3C

We would like to inform 3GPP-SA3 that W3C started working on web crypto API:

Please confer http://www.w3.org/2012/webcrypto/WebCryptoAPI/
3. Proposal

We kindly ask SA3 to take into consideration the proposed comments and information for further discussions and agree companion pseudo-CR to include some comments in TR 33.823 as editor’s notes.
4. Pseudo-CR
Start of FIRST change

6
Control of GBA Credentials and GBA Module in the UE

6.1
Control Mechanism 1– Same Origin Keys
To mitigate threat 1 in clause 5.2, the web browser should limit a web page to access only to those NAF specific keys that belong to origin web server. This way Javascript has access only to one NAF’s keys, which is the NAF identified by the origin of the web page. All web browsers currently implement a single-origin policy where the Javascript is able to send HTTP requests only to the server from where the original web page came from.

6.2
Control Mechanism 2 – Server Authenticated TLS

To mitigate threat 2 and threat 3, HTTPS, i.e., server authenticated TLS, should be used with integrity and confidentiality protection. This way attacking DNS does not help the attacker as the origin of the web page is authenticated using TLS, and the web page content, and B-TID and Ks_(ext)_NAF are confidentially protected against eavesdropping.
Editor’s Note: This control mechanism is not sufficient to solve the problem since attacker website could have a fake certificate, which is possible in several ways, e.g. compromised CA, weak certificate, as mentioned in following clause.
6.3
Control Mechanism 3 - Channel Binding

The usage of server authenticated TLS as described in clause 6.2, introduces another threat. Given that in commonly used browsers there are 100+ root certificates from certification authorities (CAs) who have different levels of security protection when issuing and managing certificates, it can be questioned generally, how secure TLS with server authentication really is. If one CA is compromised the attacker can use a compromised certificate to lure the user into believing that the attacker’s server is the genuine NAF the user wants to communicate with. The attacker can exploit this to realize the following two threats:

-
Threat A: The attacker obtains the Ks_NAF from the user and uses this Ks_NAF to impersonate the user towards the genuine NAF, obtain the services and let the user foot the bill.

-
Threat B: The attacker makes the user reveal information valuable for the attacker that the user would want to reveal only to the genuine NAF.

To mitigate the threat, the TLS channel should be bound to the key derivation process of GBA. As the key derivation of Ks_(ext)_NAF is already defined with a fixed set of input parameters, and backward compatibility by not changing this key derivation should be ensured, a new Javascript specific key should be derived from Ks_(ext)_NAF using a channel binding mechanism. This channel binding mechanism shall be based on either RFC 5705 (Keying Material Exporters for TLS) [4] or RFC 5929 (Channel Bindings for TLS) [7].

This mechanism does not help against threat B. The mitigation of threat B is further discussed in clause 8.1.4.

7
Potential Extension of Protocol Mechanism used on Ua Reference Point

7.1
Key derivation

In order to ensure the key separation in the HTML FORM based authentication in Ua reference point, both the FQDN and a Ua security protocol identifier for the NAF_ID needs to be specified.

FQDN

Web browser and ME vendors should check that when a Javascript requests the NAF specific key that the used FQDN in NAF_ID matches the FQDN of the origin of the web page that has the Javascript. The FQDN matches the URL of the origin. The FQDN shall also be present in the TLS server certificate. Thus, UE should be required to do this check. Implementation wise it is the web browser that has to do this check in the UE.

NOTE: Security associated with the use of the FQDN in Javascript in the manner described above is dependent upon the implementation of the web browser, which is out-of-scope for 3GPP.
Editor’s Note: FQDN checking seems the right thing to do. But asking a generic web browser to check an application specific Javascript function is very difficult to do if not impossible. 3GPP must convince the browser maker to do so. An alternative is that the GBA API module in the web browser does the checking. In this way, the browser makers do not need to do app specific stuff.
End of FIRST change
Start of SECOND change

8.3
Example sequence flows

8.3.1
Example sequence flow with channel binding

In this example message flow with channel binding the following architecture is assumed:

· GBA Function: The GBA function handles requests for GBA specific keys. It may be part of the device operating system.

· Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

· GBA_API: Part of the browser that communicates with the GBA Function and receives GBA key material requests from the Javascript code.

· Javascript: Downloaded Javascript code.
· Engine: Sets up communication with the NAF.

[image: image1.emf]NAF

Terminal

Browser

GBA APIJavascriptEngine

GBA Function

Credentials

Figure 8.3-1. Example Architecture

Below is an example sequence flow diagram of GBA usage in Web context, i.e., within Javascript.

[image: image2]
Figure 8.3-2. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is "gba.js".

1.
The web browser and the web server establish a server authenticated TLS tunnel.

2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example on how a GBA API call could look like:

document.gba.getGBAKey(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript comes to a point where a call to GBA API is made.

7.
Browser's Javascript GBA API locates the relevant information about the Javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel. The two options are as follows:

If the value of the bindingType in GBAOptions is "tls-key-extractor " (i.e. RFC 5705 is used with the label "EXPORTER_3GPP_GBA_WEB") then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

If instead the value of bindingType is "tls-server-endpoint" or "tls-unique" (i.e. RFC 5929 [7] is used), then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)

Editor’s note: If there are several key-derivation variants then indication of the variant is ffs.
12.
Browser's Javascript GBA API returns Javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

13.
The Javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via Javascript).

Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

Editor’s Note: This kind of of scenario may be too simple since many security threats exist for such a scenario. The B-TID and NAF specific key are static during the key lifetime of the NAF key: there is no challenge/response in the proposed example.

Editor’s Note: With cryptographic API, ideally cryptographic keys should not be exported. Exporting keys may be reasonable for certain use cases and under certain conditions. For example, when encrypting a large data file and the encryption key is randomly generated for one time use. For operations such as authentication, the key should remain inside the entity, which is capable of handling the required crypto operations of the cryptographic API.

Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using either RFC 5705 or RFC 5929

12. Return Ks_js_NAF with B-TID and key expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

_1387101755.vsd
NAF

Terminal

Browser

GBA API

Javascript

Engine

GBA Function

Credentials

