3GPP TSG SA WG3 (Security) Meeting #67
S3-120314
21-25 May, 2012; Kyoto, Japan

Source:
InterDigital Communications
Title:
Use of a GBA-API that is Separate from the UE Browser
Document for:
Discussion
Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
1. Introduction
In draft TR 33.8de, Security for usage of GBA with a UE Browser, a mechanism is proposed whereby authentication of the UE to the NAF inside a TLS tunnel is achieved using an HTML Webform instead of HTTP Digest. The solution described in the draft TR requires the Web browser to incorporate a GBA API plugin in order to interact with the GBA functions in the UE. The present document proposes and discusses a solution where the GBA API is a separate entity from the browser.
2. Rationale
In draft TR 33.8de, the web page has a software module implemented in javascript which obtains from the GBA function in the UE the following components of a GBA security association: a NAF specific key and the B-TID. In the simplest case, the Web browser uses these variables as username and password in an HTML Webform, and instructs the browser to send this information back to the web server. This requires the browser to incorporate a GBA API plugin in order to interact with the GBA functions in the UE. The present document proposes a solution which splits the GBA API from the WEB browser and discusses the advantages of the GBA API being a separate entity, accessible from the browser..

3. Discussion of Issues and Proposed Solution
3.1 Description of Proposed Solution (Separation of GBA API and Web Browser)

[image: image1.emf]Credentials

Terminal

GBA API

NAF

GBA Function

Browser

EngineJavascript

Figure: 1: Architecture
As can be seen in the above diagram, the GBA API is now external to the browser. The interface between the Javascript and the GBA API and between the GBA API and the GBA function can now be standardized by 3GPP.
The entities involved are as follows:

· GBA function: The GBA function performs bootstrapping process based on a request through a standardized API. The GBA function may be part of the device operating system or a standalone application.

· Standardized GBA API: The standardized GBA API provides an interface for the browser to invoke the GBA function. The API is agnostic to the device-specific GBA function, browser and scripting tools.

· Web Browser: The web browser in addition to the browser engine, has a Javascript component that interprets GBA related messaging and interacts with a NAF, with GBA function using GBA API calls and with the browser engine.

A standardized GBA API provides the glue between the GBA function and the mobile browser. When a GBA process is triggered through the use of the browser, calls are made to the standardized GBA API (browser-agnostic API) to invoke the GBA function. Once the bootstrapping process is completed by the GBA function, the required credentials such as B-TID and Ks_ext_NAF / Ks_NAF are provided by the GBA API to the calling function in the browser.
3.2 Discussion: Separation of GBA API and Web Browser vs. GBA API Inside the Browser
Below we summarize the issues concerning the solution of a GBA API inside the browser vs. the solution of separating the GBA API from the browser:

Standardisation:

· Characteristics of a GBA API in the browser would need to be specified by W3C, as this is specific for browsers. If the GBA API is separate from the browser, 3GPP can specify its characteristics as seen at the interface.
· By providing a separate GBA API, the browser’s Javascript which accesses the GBA API can be standardised and separated from the non-standardized Javascript that interfaces to the NAF using HTML Webform.
Commercial Issues:

GBA adoption relies on implementation of the GBA API in a variety of WEB browsers implemented on different UE platforms.. By providing a separate GBA API, the development and implementation decisions are placed outside of the UE-specific browser. Thus, these decisions can be more easily influenced by the parties with the greatest interest (eg. Network Operators and UE vendors).
Interoperability:

Browser developers would need to know on which devices the browser would be deployed, in order to adapt the communication of the GBA API to the device characteristics of the GBA function, which could be significantly different between various device manufacturers and O/S implementations. By separating the GBA API from the browser, the overall implementation can be made agnostic to devices and browsers being used.
Flexibility of Implementation:

· The GBA API may be independently developed as a single product that caters to a variety of mobile browsers.
· By separating the GBA API from the browser, the functionality required on the browser may be reduced, leading to reduced complexity of the browser.
· The separate GBA API can be provided as a downloadable app(let) or as an OS function, providing additional deployment flexibility.
· The channel binding mechanism described in draft TR33.8de is not affected by the proposal of having a separate GBA API.

Summary:

It is more convenient and easier for adoption of GBA to have a device-specific API which can be provided as an app/applet or OS add-on. 3GPP can then define the interfaces to the application layer, i.e. to the browser as well as to the GBA function in the device. This provides an abstraction layer on top of the hardware GBA function and makes GBA functionality more easily accessible by browsers.

4
Recommendation
The authors recommend that SA3 agrees to the solution of a browser-independent GBA API being added to draft TR33.8de, as an additional possible solution and as an SA3 working assumption.
END
_1397901380.vsd
Credentials

Terminal

GBA API

Browser

NAF

GBA Function

Engine

Javascript

