3GPP TSG-SA3 (Security)
S3-120432
SA3#67, 21-25. May, 2012; Kyoto, Japan
revision of S3-12xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Definitions
Document for:
Discussion and Approval
Agenda Item:
7.5.1
Work Item / Release:
Web GBA
1. Introduction
The document has now reached a stable level, so that a general clean-up on defitions, abreviations and template text is advisable. This P-CR proposes various smaller corrections to improve the quality of the Technical Report.
===== BEGIN CHANGE =====
Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

===== NEXT CHANGE =====
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".
[3]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[4]
IETF RFC 5705 (2010): "Keying Material Exporters for Transport Layer Security (TLS)".

[5]
W3C Candidate Recommendation (Dec 8, 2011): "Web Storage", work in progress, http://www.w3.org/TR/webstorage/

[6]
W3C Working Draft (Oct 20, 2011): "File API", work in progress, http://www.w3.org/TR/FileAPI/
[7]
IETF RFC 5929 (2010): "Channel Bindings for TLS".
[x]
W3C Working Draft (Apr 20, 2012): "HTML5 – A vocabulary and associated APIs for HTML and XHTML", work in progress, http://dev.w3.org/html5/spec/

===== NEXT CHANGE =====
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

HTML FORM: A HTML form is a section of a HTML document containing normal content, markup, special element called controls (checkboxes, radio buttons, text fields, password fields, etc.) and labels on those controls. End users generally "complete" a form on a web page by modifying its controls (entering text, selecting radio buttons, etc.), before submitting the form to an agent for processing (e.g., to a web server).

HTML5: HTML5 is a W3C specification [x] that defines the fifth major revision of the Hypertext Markup Language (HTML), the standard language for describing the contents and appearance of Web pages.

JavaScript: JavaScript is a prototype-based scripting language that was formalized in the ECMAScript language standard. JavaScript is primarily used in the form of client-side JavaScript, implemented as part of a Web browser in order to provide enhanced user interfaces and dynamic websites.

Same origin policy: Some origin policy is a security mechanism in a client browser that permits webpage scripts to access their associated website’s data and methods but restricts its access to scripts and data stored by other websites.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1] and TS 33.220 [2].

API
Application Programming Interface

BSF
Bootstrapping Server Function

B-TID
Bootstrapping Transaction Identifier

CA
Certification Authority

DNS
Domain Name System

FQDN
Fully Qualified Domain Name

GBA
Generic Bootstrapping Architecture

HTML
HyperText Markup Language

HTTP
HyperText Transfer Protocol

HTTPS
HTTP Over TLS
MBMS
Multimedia Broadcast Multicast Service

ME
Mobile Equipment

NAF
Network Application Function

NAF_ID
NAF identifier

TLS
Transport Layer Security

UE
User Equipment

URL
Uniform Resource Locator

4
Assumptions about Architecture for using GBA from a UE web browser

4.1
Introduction

The most used authentication method in the Internet today is HTML FORM based authentication. It is commonly used with web browser where a login page is downloaded over HTTPS and which contains an HTML FORM with at least 'username' and 'password' fields.

The current mechanism how GBA could be used from web browser is to use GBA with HTTP Digest as specified in clause 5.3 of 3GPP TS 33.222 [3]. In this case, the GBA enabled web server can detect whether the web browser is able to perform GBA with HTTP Digest by examining the "User-Agent" header. If "3gpp-gba" product token is present in this header, then the web server (NAF) is able to perform GBA with HTTP Digest with the web browser in the terminal. However, HTTP Digest has one general drawback. In current implementations, once web browser has started to use HTTP Digest with a particular web server, it continues to use it until the browser instance is terminated. This is common behavior in web browsers today.

This means that there is no way of doing a logout as browser keeps on sending the HTTP Digest headers back to the web server. Another drawback is that using HTTP Digest in parallel to HTML FORM based authentication is not straight forward as the authentication happens in different layers of protocols and with different input windows (as web browsers typically implement a dialog window to handle the query HTTP Digest authentication credentials from the end user compared to HTML FORM having query for the credentials implemented as part of the web page itself).

In order to simplify the usage of GBA in web browser this TR outlines the access to GBA in HTML layer, namely using Javascript.
===== NEXT CHANGE =====
5
Usage Scenarios and accompanying Threats for using GBA from a UE web browser

5.1
Usage Scenarios

5.1.1
Usage scenario 1

End user wants to use some service provider’s services (e.g., an operator), and the service provider wants to use GBA to authenticate the user.
1)
End user opens web browser application in the ME, and instructs it to go the service provider’s web page. The web page redirects the web browser to a login page if end user has not yet authenticated.
2)
Service provider’s login page has logic to discover whether Javascript access to GBA is enabled in the browser or not (can be done with Javascript). If GBA is not supported, the web page reverts to other means of authentication, e.g., legacy username/password. If GBA is supported, proceed to step 3.

3)
The web page has code implemented in Javascript that obtains a NAF specific key and the B-TID from the GBA function in the UE. In simplest case, the browser uses these variables as username and password in an HTML FORM, and instructs the web browser to send this information back to the web server.

4)
The web server extracts the NAF specific key and the B-TID, and uses B-TID to fetch the NAF specific key from the BSF over Zn interface. The NAF compares the received NAF specific key from the BSF with the one received from the UE. If they are equal, end user is authenticated, and the requested service is provided to the ME and the end user.
===== NEXT CHANGE =====
6
Control of GBA Credentials and GBA Module in the UE

6.1
Control Mechanism 1– Same Origin Keys
To mitigate threat 1 in clause 5.2, the web browser should limit a web page to access only to those NAF specific keys that belong to origin web server. This way Javascript has access only to one NAF’s keys, which is the NAF identified by the origin of the web page. All web browsers currently implement a single-origin policy where the Javascript is able to send HTTP requests only to the server from where the original web page came from.
6.2
Control Mechanism 2 – Server Authenticated TLS

To mitigate threat 2 and threat 3, HTTPS, i.e., server authenticated TLS, should be used with integrity and confidentiality protection. This way attacking DNS does not help the attacker as the origin of the web page is authenticated using TLS, and the web page content, and B-TID and Ks_(ext)_NAF are confidentially protected against eavesdropping.

6.3
Control Mechanism 3 - Channel Binding

The usage of server authenticated TLS as described in clause 6.2, introduces another threat. Given that in commonly used browsers there are 100+ root certificates from certification authorities (CAs) who have different levels of security protection when issuing and managing certificates, it can be questioned generally, how secure TLS with server authentication really is. If one CA is compromised the attacker can use a compromised certificate to lure the user into believing that the attacker’s server is the genuine NAF the user wants to communicate with. The attacker can exploit this to realize the following two threats:

-
Threat A: The attacker obtains the Ks_NAF from the user and uses this Ks_NAF to impersonate the user towards the genuine NAF, obtain the services and let the user foot the bill.

-
Threat B: The attacker makes the user reveal information valuable for the attacker that the user would want to reveal only to the genuine NAF.

To mitigate the threat, the TLS channel should be bound to the key derivation process of GBA. As the key derivation of Ks_(ext)_NAF is already defined with a fixed set of input parameters, and backward compatibility by not changing this key derivation should be ensured, a new Javascript specific key should be derived from Ks_(ext)_NAF using a channel binding mechanism. This channel binding mechanism shall be based on either RFC 5705 (Keying Material Exporters for TLS) [4] or RFC 5929 (Channel Bindings for TLS) [7].

This mechanism does not help against threat B. The mitigation of threat B is further discussed in clause 8.1.4.
7
Potential Extension of Protocol Mechanism used on Ua Reference Point

7.1
Key derivation

In order to ensure the key separation in the HTML FORM based authentication in Ua reference point, both the FQDN and a Ua security protocol identifier for the NAF_ID needs to be specified.

FQDN

Web browser and ME vendors should check that when a Javascript requests the NAF specific key that the used FQDN in NAF_ID matches the FQDN of the origin of the web page that has the Javascript. The FQDN matches the URL of the origin. The FQDN shall also be present in the TLS server certificate. Thus, UE should be required to do this check. Implementation wise it is the web browser that has to do this check in the UE.

NOTE: Security associated with the use of the FQDN in Javascript in the manner described above is dependent upon the implementation of the web browser, which is out-of-scope for 3GPP.
Ua security protocol identifier

Since HTML FORM is tunneled through TLS, one possibility is to use the Ua security protocol identifier for Ua security protocols that are based on TLS (HTTP Digest with HTTPS and Pre-shared key TLS) that is already specified in Annex H of 3GPP TS 33.220 [2]: (0x01,0x00,0x01,yy,zz), where yy and zz are the protection mechanism CipherSuite as specified in relevant TLS specifications by IETF. However, the HTML FORM based authentication within TLS is significantly different from this Ua security protocol identifier where the NAF specific key is used as a password in the (TLS tunneled) HTTP Digest case compared to HTML FORM case where the NAF specific key is transferred in plain text inside the TLS tunnel. Therefore it is recommended to specify a new Ua security protocol identifier for Ua protocols that transfer the NAF specific key in plain text inside a TLS tunnel, e.g., (0x01,0x00,0x02,yy,zz), where the third octet (0x02) would distinguish this case from other protocols tunneled inside TLS. The last two octets (yy,zz) would specify the TLS ciphersuite used.

NOTE1:
Whenever a new Ua protocol is specified where the client authentication is performed inside a server authenticated TLS tunnel, and the client authentication is based on a protocol (inside a TLS tunnel) not covered by the existing Ua security protocol identifiers, then a new identifier should be specified. In general, this kind of Ua security protocol identifier could be in the form where the used TLS ciphersuite is indicated the same way as above (last two octets of the identifier), and the used client authentication protocol by (subset) of the remaining octets (second and/or third octet).

7.2
Channel binding

7.2.1 Background
To mitigate the threat introduced in clause 6.3, a second level of key derivation is introduced. When Javascript code that is downloaded from the web server via the server authenticated TLS tunnel requests for a GBA based key, the request is first handled by the web browser and more specifically the GBA API module in the web browser. The GBA API module will request the Ks_(ext)_NAF key from the GBA Function in the ME using the Javascript specific NAF_ID as specified in clause 7.1. After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API will derive a Javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel.

The channel binding can be performed using either RFC 5705 or RFC 5929 [7], as is described below. It is possible for the JavaScript code to select which option to use when it requests the Ks_js_NAF key from the GBA API. An example sequence flow is in clause 8.3.1.
7.2.2 Option 1: Channel binding using RFC 5705

After receiving the Ks_(ext)_NAF key from the GBA Function the GBA API obtains the TLS_MK_Extr, which is extracted from the TLS master key using the exporter function as specified in RFC 5705 [4]. The label for the exporter function shall be "EXPORTER_3GPP_GBA_WEB". The Ks_js_NAF shall be derived from Ks_(ext)_NAF as follows:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

Editor's note:
The label "EXPORTER_3GPP_GBA_WEB" for the exporter function needs to be registered with IANA.

An example sequence flow is in clause 8.3.1.

7.2.3 Option 2: Channel binding using RFC 5929
After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API obtains either the tls-server-endpoint or tls-unique binding type as specified in RFC 5929 [7]. The Ks_js_NAF shall be derived from Ks_(ext)_NAF as follows:

Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)
The tls-server-endpoint binding type (the fingerprint of the server’s certificate) has the advantage that it may be used with existing web servers and server-side proxies without modifications to the web servers or proxies. At the same time it also provides protection in the case where one of the browser root CAs gets compromised. However, if the derived key gets stolen through code injection (e.g., cross-site-scripting or inclusion of malicious third-party-code) then the tls-server-endpoint binding type is not sufficient. To prevent reuse of the key even in this scenario, one has to use the tls-unique binding type (the client’s Finished message in the TLS handshake) which binds the credential to the particular TLS connection. The downside of this binding type, however, is the lack of support in web servers and server-side proxies.

An example sequence flow is in clause 8.3.1.

8
Common Practices and Examples

8.1
Security Considerations

…

===== NEXT CHANGE =====
8.3
Example sequence flows

8.3.1
Example sequence flow with channel binding

In this example message flow with channel binding the following architecture is assumed:

· GBA Function: The GBA function handles requests for GBA specific keys. It may be part of the device operating system.

· Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

· GBA_API: Part of the browser that communicates with the GBA Function and receives GBA key material requests from the Javascript code.

· Javascript: Downloaded Javascript code.
· Engine: Sets up communication with the NAF.

[image: image1.emf]NAF

Terminal

Browser

GBA API Javascript Engine

GBA Function

Credentials

Figure 8.3-1. Example Architecture

Below is an example sequence flow diagram of GBA usage in Web context, i.e., within Javascript.

[image: image2]
Figure 8.3-2. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is "gba.js".

1.
The web browser and the web server establish a server authenticated TLS tunnel.

2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example on how a GBA API call could look like:

document.gba.getGBAKey(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript comes to a point where a call to GBA API is made.

7.
Browser's Javascript GBA API locates the relevant information about the Javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel. The two options are as follows:

If the value of the bindingType in GBAOptions is "tls-key-extractor" (i.e. RFC 5705 is used with the label "EXPORTER_3GPP_GBA_WEB") then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

If instead the value of bindingType is "tls-server-endpoint" or "tls-unique" (i.e. RFC 5929 is used), then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)

Editor’s note: If there are several key-derivation variants then indication of the variant is ffs.
12.
Browser's Javascript GBA API returns Javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

13.
The Javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via Javascript).

Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

===== END CHANGE =====
Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using either RFC 5705 or RFC 5929

12. Return Ks_js_NAF with B-TID and key expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

_1387101755.vsd
NAF

Terminal

Browser

GBA API

Javascript

Engine

GBA Function

Credentials

