3GPP TSG-SA3 (Security)
S3-120061
SA3#66, 6 - 10 February, 2011; Vancouver, Canada
revision of S3-12xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Security considerations
Document for:
Discussion and Approval
Agenda Item:
7.5.1
Work Item / Release:
Web GBA
1. Introduction
Clause 6.3 describes how a particular threat can be countered by a channel binding mechanism. This mechanism is described in detail in clause 7.2 where the derivation of the key Ks_js_NAF is defined. This contribution provides a more differentiated view on which threats can and cannot be countered by this mechanism. Also, new security considerations section is added to clause 8.

===== BEGIN CHANGE =====

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".
[3]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[4]
IETF RFC 5705 (2010): "Keying Material Exporters for Transport Layer Security (TLS)".

[y]
W3C Candidate Recommendation (Dec 8, 2011): "Web Storage", work in progress, http://www.w3.org/TR/webstorage/

[z]
W3C Working Draft (Oct 20, 2011): "File API", work in progress, http://www.w3.org/TR/FileAPI/
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

===== BEGIN NEXT CHANGE =====
6.3
Control Mechanism 3 - Channel Binding

The usage of server authenticated TLS as described in clause 6.2, introduces nother threats. Given that in commonly used browsers there are 100+ root certificates from certification authorities (CAs) who have different levels of security protection when issuing and managing certificates, it can be questioned generally, how secure TLS with server authentication really is. If one CA is compromised the attacker can use a compromised certificate to lure the user into believing that the attacker’s server is the genuine NAF the user wants to communicate with. The attacker can exploit this to realize the following two threats:

-
Threat A: The attacker obtains the Ks_NAF from the user and uses this Ks_NAF to impersonate the user towards the genuine NAF, obtain the services and let the user foot the bill.

-
Threat B: The attacker makes the user reveal information valuable for the attacker that the user would want to reveal only to the genuine NAF.
To mitigate threat A, the TLS channel should be bound to the key derivation process of GBA. As the key derivation of Ks_(ext)_NAF is already defined with a fixed set of input parameters, and backward compatibility by not changing this key derivation should be ensured, a new javascript specific key should be derived from Ks_(ext)_NAF using a channel binding mechanism. This channel binding mechanism shall be based on a session key extracted from the TLS master key as specified in RFC 5705 [4].
This mechanism does not help against threat B. The mitigation of threat B is further discussed in clause 8.1.4.
===== BEGIN NEXT CHANGE =====
8
Common Practices and Examples

Editor’s Note: This in an informative chapter with guidance for developers to avoid common security mistakes.

8.1
Security Considerations
8.1.1
General Scripting Security Considerations
JavaScript has been designed as an open scripting language, and it has its own security model. This model has not been designed to protect the server administrator or the data that is passed between the browser and the external application server. The scripting language security model is designed to protect the user from malicious servers, and as result, capabilities of javascript have been restricted. For example, currently deployed javascript implementations cannot read or write files on users' computers, or interact between different web pages that are open at the same time in the browser. W3C has been extending javascript APIs to include new functionality, including File API [z] enabling reading and writing files, and HTML5 Web Messaging enabling communication between the web pages in the browser.

8.1.2
GBA key control

When the javascript specific key (Ks_js_NAF) is requested by a web page, its creation is controlled by the web browser as specified in clause 7. The Ks_js_NAf is bound to the web server, to the javascript context, and to the type of TLS tunnel used by using NAF_ID as described in clause 7.1. The Ks_js_NAF should not be used outside of the designed web page context.

8.1.3
User grants

When javascript in a web page is trying to access the javascript specific key via the javascript GBA API, the browser executing the javascript may prompt the end user with a permission dialog asking the end user to grant access to the key. The end user can then decide whether to allow access or deny it, and also additionally have the browser remember the decision. This mimics the functionality of the browsers today that support geolocation javascript API. There javascript notifies the end user, that the current page is requesting location information. The end user has then the possibility to either grant access or deny it. Additionally, the end user may have the browser remember that decision, so that the next time the same page is requesting access to the location information, the answer from the previous query from the end users is used without disturbing the end user.

8.1.4
Root CAs in Browser

Clause 6.3 describes the threats related to a compromised CA where either the CA certificate itself or the certificate of some root CA above the compromised CA is present in browsers' root CA list. With the threat B it is possible to issue certificates containing any DNS name, and therefore pretend to be any server. If the attacker can spoof https://www.facebook.com or https://accounts.google.com for instance, he can easily trick users into entering their username and password to attacker's webpages by just mimicking the look-n-feel of the attacked webpages. Additionally, with the introduction of HTML5 there are additional things to consider as HTML5 introduces new features like WebStorage API [y], where a web site can use "localStorage" function to store name-value pairs to the browser, which can be later accessed only by those web pages that have been downloaded from same server identified by protocol/site/port tuple. With this threat, the attacker can fully read from and write to the localStorage of the attacked site.

There is no way to mitigate this threat if a compromised CA is listed in browsers' root CA list except strongly recommend that the browser vendors should carefully consider which CAs they include to their browser offering as trust roots by default, and that the browser implementation should show proper warnings to the end user, if the user (or some service on behalf of the user) tries to add a new CA as trust root. In addition, root CA stores managed online by some external instance, e.g., browser vendors updating root CA stores of their browsers online, should also be kept up-to-date.
===== END CHANGE =====

