3GPP TSG-SA3 (Security)
S3-120059
SA3#66, 6 - 10. February, 2012, Vancouver, Canada
revision of S3-12xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Addition of missing headings
Document for:
Discussion and Approval
Agenda Item:
7.5.2
Work Item / Release:
GBA_Digest
1. Introduction
We propose to add the following titles to chapter 7.3 to the Technical Report TR 33.914.
CHANGE
7.3.1
Solution 2 – Architectures and Interworking
7.3.1.1
Solution 2 – High-level Architecture

[image: image1.emf]IM Subsystem

(IMS)

using SIP Digest

UE

S-CSCF

HSS

SIP

AS

SSO

Subsystem

RP(AS)

Isc

Cx

Gm

SSOh

SSOb

SSOa

IdP(SSO

Server)

Figure 7.3-1:High-level architecture for SSO to applications for Common IMS based on SIP Digest
Figure 7.3-1 shows a high-level architecture for SSO to applications for Common IMS based on SIP Digest.The IdP(SSO Server) contained in the substructure of the SSO subsystem which could be leveraged to enable application servers and on the user side to establish shared keys could provide the SSO service to application servers based on SIP Digest. There are four new reference points linking the UE、the HSS and the RP(AS) to the IdP(SSO Server), as well as linking the UE and the RP. The reference points SSOh and SSOb could provide the SSO functionality.

General requirements for the functionality of the IdP(SSO Server) are:

· It shall be able to communicate securely with the HSS.

· It shall be able to perform authentication based on SIP digest based credentials.
· It shall be able to generate a shared key and a session key with a UE.

· It shall be able to manage the Identity-related security keys and credentials.

The required functionalities for a UE are:

· Supporting authentication using SIP digest credentials.

· Generating a shared key and a session key with the IdP.

The requirements for the reference point SSOa are:

· The reference point SSOa carries the application protocol,which is secured using a session key between a UE and the IdP

The requirements for the reference point SSOb are:

· The reference SSOb shall provide mutual anthentication beween the IdP and a UE based on the SIP Digest method

· The IdP and a UE shall be able to generate shared keys

· The IdP shall be able to identify the UE

· The IdP shall be able to indicate to the UE the lifetime of the shared key
The requirements for the reference point SSOh are:

· The IdP shall be able to retrieve SD-AV from the HSS, so we can re-use the Cx interface as the SSOh reference point.
7.3.1.2
Interworking of solution 2 with other SSO systems
The solution which could realize SIP Digest-based SSO with the Common IMS in the UICC-less environment has the following advantages:
The approach outline above for the non-UICC solution could provide some forms of interworking with other existing SSO subsystem, notably OpenID and Liberty Alliance. The architecture for interworking of the solution with OpenID that takes into account the baseline architecture from clause 7.3.1 is shown in Figure 7.3-2. It makes the Application Server (AS) in the solution subsystem and the OpenID Provider (OP) in the OpenID as an entity, and the interfaces between the UE and the RP and the RP and the OP are out of scope of 3GPP and based on the OpenID protocols.

[image: image2.emf]IM Subsystem

(IMS)

using SIP Digest

UE

S-CSCF

HSS

SIP

AS

SSO

Subsystem

OP/

AS

Isc

Cx

Gm

SSOh

SSOb

SSOa

RP

OpenID

OpenID

IdP(SSO

Server)

Figure 7.3-2: Architecture for interworking with OpenID

Interworking with Liberty Alliance is quite analogous with interworking with OpenID.

The approach outline above for the non-UICC solution could provide some forms of interworking with other existing SSO subsystem , Interworking of GBA with Liberty Alliance systems is described in TR 33.980 [8]. It may be useful to take the approaches in TR 33.980 into account when studying the interworking of the SIP Digest-based SSO subsystem defined in this TR with Liberty Alliance. The results of the study shall not be bound by the approaches taken in TR 33.980 in any way, however.

The approach outline above for the non-UICC solution could provide some forms of interworking with Liberty Alliance, The architecture for interworking of the solution with Liberty Alliance that takes into account the baseline architecture from clause 7.3.1 is shown in Figure 7.3-3. It makes the Application Server (AS) in the solution subsystem and the Identity Provider (L_IdP) in the Liberty Alliance as an entity. The interface between the UE and the SP, and the interface between the SP and the L_IdP are out of scope of 3GPP, both of them are based on the Liberty Alliance protocols.
·
[image: image3.emf]IM Subsystem

(IMS)

using SIP Digest

UE

S-CSCF

HSS

SIP

AS

SSO

Subsystem

Isc

Cx

Gm

SSOh

SSOb

SSOa

IdP(SSO

Server)

 L_IdP

/AS

 Liberty

 Alliance

SP

· Figure 7.3-3: Architecture for interworking with Liberty Alliance

NEXT CHANGE

7.3.2.1
Solution 2 – Message Flows
Editor’s Note: The solution above and below have some overlap and need to be sorted out, how is for further study.

The solution realizes a SSO function that is available when an IMS UE is authenticated over SIP Digest authentication mechanism. Figure 7.3-4 shows the message flow of the authentication process to realize SIP Digest-based SSO with the Common IMS in the UICC-less environment.

[image: image4.emf]UE

RP(Application

Server)

IdP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K

0

;Calculate response;

10.Check against nonce;calculate Xresponse and

compare Xresponse with response;calculates the

value of rspauth;Generate K

0

1.Service Request

2.Redirect request to IdP

RP_credential

3.HTTP request to the IdP with a UE Authentication Request

U_credential

5.Get SD-AV&user profile

based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP

E

K

0

(nonce1,RP_Auth);E

K

r,i

(K

1

,UE_Auth)

14.Redirected to RP

E

K

r,i

(K

1

,UE_Auth)

4.Authenticate RP ;check K

0

13.Decrypt

E

K

0

(nonce1,RP_Auth)

;

obtain RP_Auth and nonce1,generate

and compare rspauth;generate K

1

Establishment of

shared secret Kr

,i

11.Know UE authentication result information

UE_Auth;Generate nonce1and K

1

;K

0

encrypts

nonce1and RP_Auth

；

E

K

0

(nonce1,RP_Auth);

E

K

r,i

(K

1

,UE_Auth)

15.Decrypt

E

K

r,i

(K

1

,UE_Auth)

,obtain UE_Auth and K

1

17.Notify

E

K

1

(UE_Author)

18.Decrypt

E

K

1

(UE_Author)

;

access to the requested service

16.Authorized information for UE UE_Author;

E

K

1

(UE_Author)

Figure 7.3-4 authentication process of SIP Digest-based SSO with the Common IMS

The basic steps are as follows:

1. The UE issues a service request to RP.
Editor’s note: the generation and the form of the identifier is FFS.

Editor’s note: the identifier e.g. IMPI and the transfer of the new credential to the UE are ffs.

2. The RP redirects the UE to the IdP with the RP Authentication Request. The redirected request includes the RP identifier (RP_credential).

3. Following this redirection the UE sends a HTTP request to the IdP with the UE authentication request. The request includes the UE identifier (U_credential).
Editor’s Note: It is FFS how the RP can redirect the UE to the IdP (SSO) if the UE does not provide any identifier to the RP.
4. The IdP authenticates the RP based on the RP_credential and generates related authentication result RP_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

NOTE1: The RP and the IdP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and IdP are out of scope. With this shared secret the IdP can sign subsequent messages and the RP can verify those messages.

5.
The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6.
The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7.
The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8.
Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

9.
The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

10.
Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. If the UE is successfully authenticated, the IdP calculates the value of rspauth based on SIP Digest as specified in RFC 2617 [5] and generates the shared secret K0 based on the H(A1), the cnonce, etc.
11.
The IdP knows the User authentication conclusion (UE_Auth); and then the IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and RP_Auth using K0, i.e. EK0(nonce1,RP_Auth); and encrypts the K1 and UE_Auth using Kr,i, i.e. EKr,i (K1,UE_Auth).

12.
The IdP sends the UE an message including EK0(nonce1,RP_Auth) and EKr,i (K1,UE_Auth) ,the value of rspauth with redirection.

13.
The UE decrypts the EK0(nonce1,RP_Auth) and then obtains RP_Auth and nonce1. Based on the RP_Auth the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, the UE will stop visiting the RP. The UE calculates the rspauth in the same way as the IdP did in step 9, and uses it to check against the rspauth sent by the IdP. If the check is successful, the authentication of the Network is succeeded, else the authentication fails. If the Network is successfully authenticated, and then the UE will generates the shared secret K1 based on K0, nonce1.

14.
The message sent by the IdP is redirected to the RP including EKr,i (K1,UE_Auth).

15.
The RP decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1.

16.
After verifying the UE_Auth, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17.
The RP notifies the UE about the authorization information.

18.
The UE decrypts the EK1(UE_Author) and then accesses to the requested service.
NOTE2: The last 3 steps 16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.

If there is a failure in steps 1 through 15 – the authentication procedure stops.
The SSO subsystem under the solution can provide some forms of interworking with, or support for, other SSO systems, notably OpenID and Liberty Alliance. In the following a message flow of the authentication process is defined to describe business cases where while an operator wishes to be OpenID provider. It makes the operator a critical part of OpenID framework in this case, and allows the operator to leverage their valuable assets, such as subscription credentials and their customers’ trust, effectively enabling operators to become OpenID providers.

[image: image5.emf]UE

RP(Application

Server)

OP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K

0

;calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse with

response;Generate UE authentication

assertion UE_Assert and K

0

1.AuthnOpenID request

OpenID identifier

2.Redirect request to OP

RP_credential

3.Redirected request to OP

RP_credential

5.Get SD-AV&user

profile based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP

E

K

0

(nonce1,RP_Assert);E

K

r,o

(K

1

,UE_Assert)

14.Redirected to RP

E

K

r,o

(K

1

,UE_Assert)

4.Authentication RP and genarate RP

authenticate assertion;check of K

0

13.Decrypt

E

K

0

(nonce1,RP_Assert);

obtain

RP_Assert and nonce1; genarate K

1

Establishment of

shared secret Kr,

o

11.Generate nonce1 and then generate

K

1

;K

0

encrype nonce1andRP_Assert

；

E

K

0

(nonce1,RP_Assert);E

K

r,o

(K

1

,UE_Assert)

15.Decrypt

E

K

r,o

(K

1

,UE_Assert)

,obtain UE_Assert and K

1

17.Notify

E

K

1

(UE_Author)

18.Decrype

E

K

1

(UE_Author)

;

access to the requested service

16.Authorized information for UE UE_Author;

E

K

1

(UE_Author)

Figure 7.3-5 authentication process of interworking of the SIP Digest-based SSO with the OpenID

The basic steps are as follows:

1. The UE issues an authentication request AuthnOpenID to the RP which includes an OpenID identifier.

2. The OpenID Identifier is normalized as described in Appendix A.1 of [14].The RP (Application server), using the presented OpenID identifier, discovers the URL of the OpenID identity provider OP, and redirects the user authentication request to that URL. The request includes the RP identifier (RP_credential).

3. The authentication request is redirected to the OpenID identity provider (OP). After this step the OP correlates the OpenID identifier with the UE identifiers.
4. The OP authenticates the RP based on the RP identifier. Assuming RP authentication success, the OP checks whether there is already a shared secret K0 between the UE and the OP according to the OpenID identifier. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

NOTE3: The RP and the OP shall have a shared secret (Kr, o) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.

NOTE4: The OP is the sole decision point for RP’s authenticity, and this means that any explicit messaging, e.g. to the UE, regarding the OP’s decision on the authenticity of the RP, is redundant and unnecessary.
NOTE5: There may be security concerns if this message (about OP notifying the UE about failure of OP authentication of the RP) is sent unprotected.
5. The OP sends authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617 [5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7. The OP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].
9. The UE sends a response to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

10. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. The OP stores an authentication assertion (UE_Assert). If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.

11. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 using K0, i.e. EK0(nonce1); and encrypts the K1 and UE_Assert using Kr,o, i.e. EKr,o (K1,UE_Assert).

12. The OP sends the UE an message including EK0(nonce1) and EKr,o (K1,UE_Assert) with redirection.

13. The UE decrypts the EK0(nonce1); and then obtains the nonce1; The UE will generates the shared secret K1 based on K0, nonce1.

14. The message sent by the OP is redirected to the RP including EKr,o (K1,UE_Assert).

15. The RP decrypts the EKr,o (K1,UE_Assert), and obtains UE_Assert and K1.

16. After verifying the UE_Assert, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

NOTE6: The last 3 steps 16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.
If there is a failure in steps 1 through 18 – the authentication procedure stops.

NOTE 7: In the message flow of the authentication process above, steps 1 through 3 and steps 12 through 15 comply with OpenID specification, step 4 authenticates RP, which is similar to the association establishment process in OpenID specification, steps 5 through 11 belong to SIP Digest-based authentication, steps 16 through 18 provide application security.
Editor’s Note: The aspects of providing keys for general application security between a terminal and application server, not only for interwoking with OpenID, should be also taken into account in the solution.

NOTE8: The interworking with the Liberty Alliance is similar to the interworking with the OpenID.

The solution to utilize SIP Digest authentication for SSO can maximize commonality with the already defined 3GPP approaches for interworking with non-3GPP-defined SSO system as described in TR33.924 [9] and TR33.980 [8].In the following a message flow is defined to allow the interworking with OpenID and the specific message flow is depicted as shown in Figure 7.3.6.

[image: image6.emf]UE RP

IdP(SSO) HSS

10.Generate nonce;

store nonce and H(A1)

12.Generate cnonce,H(A1)

and K

0

;Calculate response;

14.Check against nonce;calculate

Xresponse and compare Xresponse with

response;calculates the value of

rspauth;Generate K

0

1.User-Supplied-Identifier

4.Redirect ME to OP with

 OpenID Authentication Request

9.Get SD-AV&User profile

based on U_credential

U_credential,realm,qop,algorithm,H(A1)

13.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

11.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

16.Redirect ME to OP/AS

EK

0

(nonce1,OP/AS_Auth);EK

o,i

(K

1

,UE_Auth)

18.Redirected to OP/AS

EK

o,i

(K

1

,UE_Auth)

8.Authenticate OP/AS; check K

0

17.Decrypt EK

0

(nonce1,OP/AS_Auth);

Obtain nonce1and OP/AS_Auth; generate

and compare rspauth; generate K

1

Establishment of

shared secret K

o,i

15.Know UE authentication result information

UE_Auth;Generate nonce1 and then generate

K

1

;K

0

encrypts nonce1and OP/AS_Auth;

EK

0

(nonce1,OP/AS_Auth);EK

o,i

(K

1

,UE_Auth)

19.Decrypt EK

o,i

(K1,UE_Auth),obtain

UE_Auth and K

1

;Generate an assertion

OP/AS

2.Retrieval of OP address

3.Establishment of

shared secret(opt)

5.HTTPS GET Request

6.Response with a HTTPS response code 401

7.HTTP request to the IdP with a UE Authentication Request

21.RP validates the assertion

20.Redirect ME browser to RP

together with authentication assertion

Figure 7.3-6 Interworking message flow with OpenID
The basic message flow is as follows:

To initiate OpenID Authentication, the Relying Party should present the end user with a form that has a field for entering a User-Supplied Identifier. The form field’s "name" attribute should have the value "openid_identifier".

5. The browser in the ME sends a User-Supplied Identifier to the Relying Party
6. The User-Supplied Identifier is normalized as described in Appendix A.1 of [14]. The RP retrieves the address of the OP and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
7. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can sign subsequent messages and the RP can verify those messages.

NOTE9: The Diffie-Hellman Key Exchange Protocol between the OP and the RP lies outside of the 3GPP specifications, this association using Diffie Hellman is an optional feature and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems strongly advisable。
8. The RP redirects the ME’s browser to the OP with an OpenID Authentication Request as defined in chapter 9 in [14]. The RP inserts into the openid.claimed_id and into the openid.identity fields the user supplied identifier of step 1.

9. Following this redirection the ME sends a HTTPS GET request to the OP.
10. The OP/AS initiates the ME authentication and responds with a HTTPS response code 401 “Unauthorized”, which contains a WWW Authenticate header carrying a challenge requesting the UE to use SIP Digest Authentication with SSO_APS. The response message also includes the OP/AS credential (OP/AS_credential).
NOTE10: The OP/AS and the IdP shall have a shared secret (Ko,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the OP/AS and IdP are out of scope.
11. If no valid K0 is available, then the ME sends a second HTTP request to the IdP with a UE Authentication Request carrying the UE credential (U_credential) and OP/AS_credential.

12. The IdP obtains the OP/AS_credential; The IdP authenticates the RP based on the OP/AS_credential; then generates and stores related authentication result OP/AS_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 15; otherwise, the process goes on to the next step.

13. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

14. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

15. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

16. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

17. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

18. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. If the UE is successfully authenticated, the IdP calculates the value of rspauth based on SIP Digest as specified in RFC 2617 [5] and generates the shared secret K0 based on the H(A1), the cnonce, etc.

19. The IdP knows the User authentication conclusion (UE_Auth); and then the IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and OP/AS_Auth using K0, i.e. EK0(nonce1,OP/AS_Auth); and encrypts the K1 and UE_Auth using Ko,i, i.e. EKo,i (K1,UE_Auth).

20. The IdP sends the UE an message including EK0(nonce1,OP/AS_Auth), EKo,i (K1,UE_Auth) ,and the value of rspauth with redirection.

21. The UE decrypts the EK0(nonce1,OP/AS_Auth) and then obtains OP/AS_Auth and nonce1. Based on the OP/AS_Auth the UE knows the legitimacy of the requested OP/AS. If the authentication result indicates that the OP/AS is not valid, the UE will stop visiting the OP/AS. The UE calculates the rspauth in the same way as the IdP did in step 14, and uses it to check against the rspauth sent by the IdP. If the check is successful, the authentication of the Network is succeeded, else the authentication fails. If the Network is successfully authenticated, and then the UE will generates the shared secret K1 based on K0, nonce1.

22. The message sent by the IdP is redirected to the OP/AS including EKo,i (K1,UE_Auth).
23. The OP/AS decrypts the EKo,i (K1,UE_Auth), and obtains UE_Auth and K1. The OP/AS establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored in the UE_Auth. In particular, the UE_Auth may contain information about the type of information which is allowed to be shared with the RP. The OP/AS authenticates the user of OpenID using SSOa reference point, and generates an assertion based on the authorization information.
24. The OP/AS redirects the browser to the return OpenID address i.e. the OP/AS redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion which may be protected by the shared secret between OP/AS and RP. The protection is especially important if the OP/AS and the RP do not reside both in the same MNO network.
25. The RP validates the assertion i.e. checks if the authentication was approved. The authenticated identity of the user is provided in the response message towards the RP. If a shared secret was established in step 3, then it is now used to verify the message from the OP/AS. If the validation of the assertion and the verification of the message are successful, then the user is logged in to the service of the RP.
If there is a failure in steps 1 through 21 – the authentication procedure stops.

_1372505246.vsd
IM Subsystem
(IMS)
using SIP Digest

UE

S-CSCF

HSS

SIP AS

	

SSO
Subsystem

 OP/
AS

Isc

Cx

Gm

SSOh

SSOb

SSOa

RP

			OpenID

OpenID

IdP(SSO Server)

_1385188388.vsd
IM Subsystem
(IMS)
using SIP Digest

UE

S-CSCF

HSS

SIP AS

	

SSO
Subsystem

Isc

Cx

Gm

SSOh

SSOb

SSOa

SP

 L_IdP
/AS

IdP(SSO Server)

	 Liberty
	 Alliance

_1385190865.vsd
�

UE�

RP�

IdP(SSO)�

HSS�

10.Generate nonce;
store nonce and H(A1)�

12.Generate cnonce,H(A1) and K0;Calculate response;

14.Check against nonce;calculate Xresponse and compare Xresponse with response;calculates the value of rspauth;Generate K0

1.User-Supplied-Identifier

4.Redirect ME to OP with
 OpenID Authentication Request

9.Get SD-AV&User profile
based on U_credential
U_credential,realm,qop,algorithm,H(A1)

13.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

11.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

16.Redirect ME to OP/AS
EK0(nonce1,OP/AS_Auth);EKo,i (K1,UE_Auth)

18.Redirected to OP/AS
EKo,i (K1,UE_Auth)

8.Authenticate OP/AS; check K0

17.Decrypt EK0(nonce1,OP/AS_Auth);
Obtain nonce1and OP/AS_Auth; generate and compare rspauth; generate K1

Establishment of shared secret Ko,i

15.Know UE authentication result information UE_Auth;Generate nonce1 and then generate K1;K0 encrypts nonce1and OP/AS_Auth; EK0(nonce1,OP/AS_Auth);EKo,i (K1,UE_Auth)

19.Decrypt EKo,i (K1,UE_Auth),obtain UE_Auth and K1;Generate an assertion

OP/AS�

2.Retrieval of OP address

3.Establishment of shared secret(opt)

5.HTTPS GET Request

6.Response with a HTTPS response code 401

7.HTTP request to the IdP with a UE Authentication Request

21.RP validates the assertion

20.Redirect ME browser to RP together with authentication assertion

_1364718812.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

1.AuthnOpenID request
OpenID identifier

2.Redirect request to OP
RP_credential

3.Redirected request to OP
RP_credential

5.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

14.Redirected to RP
EKr,o (K1,UE_Assert)

4.Authentication RP and genarate RP authenticate assertion;check of K0

13.Decrypt EK0(nonce1,RP_Assert);obtain
RP_Assert and nonce1; genarate K1

Establishment of shared secret Kr,o

11.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1371630645.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;Calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;calculates the value of rspauth;Generate K0

1.Service Request

2.Redirect request to IdP
RP_credential

3.HTTP request to the IdP with a UE Authentication Request
U_credential

5.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

14.Redirected to RP
EKr,i (K1,UE_Auth)

11.Know UE authentication result information UE_Auth;Generate nonce1and K1;K0 encrypts nonce1and RP_Auth；EK0(nonce1,RP_Auth);
EKr,i (K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth); obtain RP_Auth and nonce1,generate and compare rspauth;generate K1

15.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1356262519.vsd
S-CSCF

HSS

IM Subsystem
(IMS)
using SIP Digest

SIP AS

UE

	

SSO
Subsystem

RP(AS)

Isc

Cx

Gm

SSOh

SSOb

SSOa

IdP(SSO Server)

