SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — SA3#64
S3-110790
11 – 15 July 2011
Mainz , Germany
revision of S3-110755
Source:
Ericsson, ST-Ericsson, AT&T, Rogers Wireless
Title:
GBA Lite
Document for:
Discussion and decision

Agenda Item:
8.5 Study on Security aspects of Integration of Single Sign-On (SSO) frameworks with 3GPP network
Work Item / Release:
FS_SSO_Int_Sec / Rel-11
This revision only adds a co-signer.
1 Introduction
The following pseudo CR describes an optimized implementation of GBA and OpenID interworking with minimal operator impact. The solution provides an interesting alternative for operators seeking to deploy SSO services but hesitate to deploy all features of GBA.

The main difference between GBA Lite and the traditional GBA and OpenID interworking is the optimized BSF and the co-location of BSF and NAF (OpenID Provider). In particular, all external interfaces are left unchanged and terminals and service providers will continue to operate as normal. If an operator finds a need later on to support other applications besides OpenID, GBA Lite can be extended to full GBA.
For the reader’s convenience, the key points have been summarized below.

· Identical to original GBA and OpenID interworking (TR 33.924).

· No specification changes necessary. An implementation optimization is achieved by co-locating BSF and NAF (OpenID Provider). The Zn interface between BSF and NAF is thus internalized.
· No changes to terminals (OpenID Clients) or service providers (OpenID Relying Parties)
· Possible to upgrade to full GBA in the future

· Reduced CAPEX (development, deployment) and OPEX (operational)
2 Proposal
We propose to adopt the below PCR into the SSO TR.
3 PCR
8.2
GBA Lite
8.2.1
Rationale for solution

Currently, from an operator standpoint, the most promising application of GBA is SSO. However, the SSO business case alone may not motivate the initial deployment cost. An SSO specific implementation option of GBA – GBA Lite – requiring a lower investment is therefore an interesting alternative. Later on, if an operator finds a need to support other applications as well, the SSO specific version can be extended to full GBA.

The solution presented here closely follows the GBA and OpenID interworking described in 3GPP TR 33.924. The difference is that the BSF and OP are co-located and hence the Zn interface is a matter of internal implementation. This results in a simpler and cheaper implementation. All other nodes and interfaces remain unchanged.

The design goals for GBA Lite were the following:

· A simple migration path to use of full GBA
· The Client and RP (Relying Party) shall follow TR 33.924 (i.e. Client and RP are unaffected)
· Aim for simplicity: keep only the core BSF functionality, remove the rest.
· Optionally, the solution should not require any BSF database (i.e. a stateless BSF)
8.2.2
Solution description
8.2.2. 1
Architecture

The architecture is identical to 3GPP TR 33.924 Figure 4.3-1 except for the co-location of BSF and OP and the consequent internalization of the Zn interface.

[image: image1.wmf]BSF

HSS

UE

RP

Zh

Ub

Ua

OP

(

NAF

)

HTTPS

HTTP

&

DH

Figure 8.2.2.2-1 GBA Lite Network Architecture
8.2.2. 2
BSF Implementation optimizations
No GUSS handling

In ordinary GBA the BSF has to support a wide range of applications with varying options and permissions. In GBA Lite, however, there is only one application: OpenID. This allows us to simplify both the handling of keys and of GBA user security settings (GUSS).
Key handling can be simplified since we only need to deal with OpenID specific keys. For example, the NAF identifier used in the key derivation can be static instead of dynamically determined at the run of the Zn protocol.
The information contained in the GUSS (key lifetime, UICC type, MSISDN etc) can either be statically encoded (key lifetime) or stored as part of the OpenID user account (UICC type, MSISDN). Typically, the OP will maintain a user account for each of its users where the OpenID identifier, attributes, and settings are stored.

Zn implementation options
Since the Zn interface is internal the vendor or operator is free to choose whatever modifications and optimizations it sees fit. Of course, one could also choose not to make any changes and implement the standard Zn interface. One possible implementation optimization is described below.

As a further, optional optimization step, the BSF could be made stateless and its database removed by modifying the internal Zn interface. This leads to a simpler implementation but migrating to traditional GBA in the future becomes less easy.
Traditional GBA requires a separate BSF database to be setup and maintained. In GBA Lite the database could be removed by storing some extra user information at the OP, since an OP database is needed anyway for OpenID related information.

[image: image2.emf]BSF NAF

BSF

Request (B-TID)

Response (Ks_NAF)

OP

Push B-TID, Ks_NAF

GBA Lite

GBA

[Internal API]

Figure 8.2.2.2-1 In a possible implementation of internal Zn interface the BSF database can be removed by replacing the Zn interface with a push based internal interface

Normally, the BSF database stores the master key Ks and B-TID resulting from a client bootstrap. The use of a database is necessary since a NAF might request its key over Zn long after the bootstrapping took place. In GBA Lite the BSF database can be removed by using a push based interface between the BSF and OP. Once a bootstrapping is finished, the BSF pushes Ks_NAF and B-TID (and possibly other data as well) to the OP.

8.2.2. 3
Message Flow

The following message flow is identical to the Direct Interworking Scenario in TS 33.924 except for the B-TID lookup (step 8 below) and a slightly different wording.

[image: image3.emf]RP OP (NAF/BSF)

1) Login (identifier)

4) HTTP 302 Redirect https://op.operator.com (identifier)

2) Discover OP

using identifier

5) HTTP 401 Unauthorized

realm="3GPP-bootstrapping@op.operator.com”

7) HTTP GET (username = B-TID, digest)

10) HTTP 302 Redirect https://rp.com (identifier, OpenID assertion)

11) Verify assertion

9) Possibly further interaction

3) (optional) A security association is established between OP and RP

6) If no valid Ks is available within the UE,

bootstrapping is performed

[details are omitted]

8) Look up Ks_(ext/int)_NAF

using B-TID and verify digest

UE

Figure 8.2.2.3-1 Interworking message flow for GBA / OpenID

1. The user initiates authentication by presenting a User-Supplied Identifier to the Relying Party via their User-Agent
2. After normalizing the User-Supplied Identifier, the Relying Party performs discovery on it and establishes the OP Endpoint URL that the end user uses for authentication.
3. (optional) The Relying Party and the OP establish an association – a shared secret established using Diffie-Hellman Key Exchange. The OP uses an association to sign subsequent messages and the Relying Party to verify those messages; this removes the need for subsequent direct requests to verify the signature after each authentication request/response.

4. The Relying Party redirects the end user's User-Agent to the OP with an OpenID Authentication request (Requesting Authentication).
5. The OP (NAF) initiates the UE authentication and responds with a HTTPS response code 401 “Unauthorized”, which contains a WWW Authenticate header carrying a challenge requesting the UE to use Digest Authentication with GBA as specified in TS 33.222 with server side certificates.
6. If no valid Ks is available, then the UE bootstraps with the BSF as described in TS 33.220, which results in the possession of the UE of a valid Ks. From this the UE can derive the application specific (OpenID specific) Ks_(ext/int)_NAF key(s).
7. The UE generates a HTTP GET request to the NAF. The HTTP request carries an authorization header containing the B-TID received from the BSF and a response digest.
8. Using the B-TID the NAF retrieves the shared application specific NAF key and validates the response digest.

Note: Since BSF–OP/NAF interface is internal, several implementation options are possible. E.g. the standard Zn interface could be implemented. Or, if the BSF is implemented as stateless, the BSF has stored the NAF specific key in the OP database during bootstrapping (step 6).
9. Possibly further interaction where e.g. the user is made aware that he is logging in to RP with OpenID.
10. The OP redirects the end user's User-Agent back to the Relying Party with either an assertion that authentication is approved or a message that authentication failed.
11. The Relying Party validates the assertion received from the by using either the shared key established during the association or by sending a direct request to the OP. If the validation is successful, then the user is logged in to the service of the RP
8.2.3
Evaluation against findings in SA1 study

3GPP

SA WG3 TD

_1370679190.vsd
UE

BSF

OP
(NAF)

RP

HSS

HTTPS

Zh

Ub

Ua

HTTP & DH

_1371043793.vsd
RP

UE

OP (NAF/BSF)

2) Discover OP using identifier

1) Login (identifier)

11) Verify assertion

4) HTTP 302 Redirect https://op.operator.com (identifier)

5) HTTP 401 Unauthorized realm="3GPP-bootstrapping@op.operator.com”

7) HTTP GET (username = B-TID, digest)

10) HTTP 302 Redirect https://rp.com (identifier, OpenID assertion)

6) If no valid Ks is available within the UE, bootstrapping is performed  [details are omitted]

9) Possibly further interaction

3) (optional) A security association is established between OP and RP

8) Look up Ks_(ext/int)_NAF using B-TID and verify digest

_1362402788.vsd

