3GPP TSG SA WG3 (Security) Meeting #63
S3-110432
11 - 15 April 2011, Chengdu, China
revision of S3-11xyzw
Source:
ZTE Corporation, China Unicom
Title:
Optimization of implementing SSO_APS based on SIP Digest
Document for:
Discussion and Approval
Agenda Item:
8.4
Work Item / Release:
11
Abstract of the contribution:
 This contribution aims to make some modification of hiding the private information of the user from application services.
1 Introduction

When user privacy is required, the design of the SIP Digest based SSO system should not allow affiliated non-IMS domain services drawing conclusions about IMS domain identities. This contribution provides some optimization about hiding the private information about the user from application services.
2
Proposal

We kindly propose SA3 to discuss and accept the following P-CR.
***** Start of first change *****
7.3 Solution 2

7.3.1
Solution 2 – Description
Editor’s Note: The solution above and below have some overlap and need to be sorted out, how is for further study.

The solution realizes a SSO function that is available when an IMS UE is authenticated over SIP Digest authentication mechanism. Figure 7.3-2 shows the message flow of the authentication process to realize SIP Digest-based SSO with the Common IMS in the UICC-less environment.

[image: image2.emf]UE

RP(Application

Server)

IdP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K

0

;Calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse

with response;obtain UE authentication

result UE_Auth;Generate K

0

1.Service Request

2.Redirect request to IdP

RP_credential

3.HTTP request to the IdP with a UE Authentication Request

U_credential

5.Get SD-AV&user profile

based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP

E

K

0

(nonce1,RP_Auth);E

K

r,i

(K

1

,UE_Auth)

14.Redirected to RP

E

K

r,i

(K

1

,UE_Auth)

4.Authenticate RP ;check K

0

13.Decrypt

E

K

0

(nonce1,RP_Auth)

;obtain

RP_Auth result and nonce1;generate K

1

Establishment of

shared secret Kr

,i

11.Generate nonce1 and then generate

K

1

;K

0

encrypts nonce1and RP_Auth

；

E

K

0

(nonce1,RP_Auth);E

K

r,i

(K

1

,UE_Auth)

15.Decrypt

E

K

r,i

(K

1

,UE_Auth)

,obtain UE_Auth and K

1

17.Notify

E

K

1

(UE_Author)

18.Decrypt

E

K

1

(UE_Author)

;

access to the requested service

16.Authorized information for UE UE_Author;

E

K

1

(UE_Author)

Figure 7.3-2 authentication process of SIP Digest-based SSO with the Common IMS

The basic steps are as follows:

1. The UE issues a service request to RP.

Editor’s note: the generation and the form of the identifier is FFS.

Editor’s note: the identifier e.g. IMPI and the transfer of the new credential to the UE are ffs.

2. The RP redirects the UE to the IdP with the RP Authentication Request. The redirected request includes the RP identifier (RP_credential).

3. Following this redirection the UE sends a HTTP request to the IdP with the UE authentication request. The request includes the UE identifier (U_credential)
4. The IdP authenticates the RP based on the RP_credential and generates related authentication result RP_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

NOTE: The RP and the IdP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and IdP are out of scope. With this shared secret the IdP can sign subsequent messages and the RP can verify those messages.

5. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

9. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

10. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. The IdP stores the authentication conclusion (UE_Auth). If the UE is successfully authenticated, the IdP generates the shared secret K0 based on the H(A1), the cnonce, etc.

11. The IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and RP_Auth using K0, i.e. EK0(nonce1,RP_Auth); and encrypts the K1 and UE_Auth using Kr,i, i.e. EKr,i (K1,UE_Auth).

12. The IdP sends the UE an message including EK0(nonce1,RP_Auth) and EKr,i (K1,UE_Auth) with redirection.

13. The UE decrypts the EK0(nonce1,RP_Auth) and then obtains RP_Auth and nonce1. Based on the RP_Auth the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, the UE will stop visiting the RP, else the UE will generates the shared secret K1 based on K0, nonce1.

14. The message sent by the IdP is redirected to the RP including EKr,i (K1,UE_Auth).

15. The RP decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1.

16. After verifying the UE_Auth, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

NOTE: The last 3 steps16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.

If there is a failure in steps 1 through 15 – the authentication procedure stops.
***** Start of second change *****
The SSO subsystem under the solution can provide some forms of interworking with, or support for, other SSO systems, notably OpenID and Liberty Alliance.. In the following a message flow of the authentication process is defined to describe business cases where while an operator wishes to be OpenID provider. It makes the operator a critical part of OpenID framework in this case, and allows the operator to leverage their valuable assets, such as subscription credentials and their customers’ trust, effectively enabling operators to become OpenID providers.

[image: image4.emf]UE

RP(Application

Server)

OP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K

0

;calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse with

response;Generate UE authentication

assertion UE_Assert and K

0

1.AuthnOpenID request

OpenID identifier

2.Redirect request to OP

RP_credential

3.Redirected request to OP

RP_credential

5.Get SD-AV&user

profile based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP

E

K

0

(nonce1,RP_Assert);E

K

r,o

(K

1

,UE_Assert)

14.Redirected to RP

E

K

r,o

(K

1

,UE_Assert)

4.Authentication RP and genarate RP

authenticate assertion;check of K

0

13.Decrypt

E

K

0

(nonce1,RP_Assert);

obtain

RP_Assert and nonce1; genarate K

1

Establishment of

shared secret Kr,

o

11.Generate nonce1 and then generate

K

1

;K

0

encrype nonce1andRP_Assert

；

E

K

0

(nonce1,RP_Assert);E

K

r,o

(K

1

,UE_Assert)

15.Decrypt

E

K

r,o

(K

1

,UE_Assert)

,obtain UE_Assert and K

1

17.Notify

E

K

1

(UE_Author)

18.Decrype

E

K

1

(UE_Author)

;

access to the requested service

16.Authorized information for UE UE_Author;

E

K

1

(UE_Author)

Figure 7.3-3 authentication process of interworking of the SIP Digest-based SSO with the OpenID

The basic steps are as follows:

1. The UE issues an authentication request AuthnOpenID to the RP which includes an OpenID identifier.

2. The OpenID Identifier is normalized as described in Appendix A.1 of [14].The RP (Application server), using the presented OpenID identifier, discovers the URL of the OpenID identity provider OP, and redirects the user authentication request to that URL. The request inchudes the RP identifier (RP_credential).

3. The authentication request is redirected to the OpenID identity provider (OP). After this step the OP correlates the OpenID identifier with the UE identifiers.
4. The OP authenticates the RP based on the RP identifier. Assuming RP authentication success, the OP checks whether there is already a shared secret K0 between the UE and the OP according to the OpenID identifier. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

NOTE: The RP and the OP shall have a shared secret (Kr, o) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.

NOTE: The OP is the sole decision point for RP’s authenticity, and this means that any explicit messaging, e.g. to the UE, regarding the OP’s decision on the authenticity of the RP, is redundant and unnecessary.

NOTE: There may be security concerns if this message (about OP notifyin the UE about failure of OP authentication of the RP) is sent unprotected.

5. The OP sends authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617 [5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7. The OP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].
9. The UE sends a response to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

10. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. The OP stores an authentication assertion (UE_Assert). If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.

11. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 using K0, i.e. EK0(nonce1); and encrypts the K1 and UE_Assert using Kr,o, i.e. EKr,o (K1,UE_Assert).

12. The OP sends the UE an message including EK0(nonce1) and EKr,o (K1,UE_Assert) with redirection.

13. The UE decrypts the EK0(nonce1); and then obtains the nonce1; The UE will generates the shared secret K1 based on K0, nonce1.

14. The message sent by the OP is redirected to the RP including EKr,o (K1,UE_Assert).

15. The RP decrypts the EKr,o (K1,UE_Assert), and obtains UE_Assert and K1.

16. After verifying the UE_Assert, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

NOTE: The last 3 steps 16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.

If there is a failure in steps 1 through 18 – the authentication procedure stops.

Editor’s Note: It should be marked, for each of the steps of the description for the protocol depicted in Figure 7.3-5, which element of the description complies to OpenID specification, and which element is beyond the scope of OpenID specification.

Editor’s Note: The aspects of providing keys for general application security between a terminal and application server, not only for interwoking with OpenID, should be also taken into account in the solution.

Note: The interworking with the Liberty Alliance is similar to the interworking with the OpenID
***** End of changes *****
_1362755063.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

1.AuthnOpenID request
OpenID identifier

2.Redirect request to OP
OpenID identifier;RP_credential

3.Redirected request to OP
OpenID identifier;RP_credential

5.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

14.Redirected to RP
EKr,o (K1,UE_Assert)

4.Authentication RP and genarate RP authenticate assertion;check of K0

13.Decrypt EK0(nonce1,RP_Assert);obtain
RP_Assert and nonce1; genarate K1

Establishment of shared secret Kr,o

11.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1362756027.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;Calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;obtain UE authentication result UE_Auth;Generate K0

1.Service Request

2.Redirect request to IdP
RP_credential

3.HTTP request to the IdP with a UE Authentication Request
U_credential

5.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

14.Redirected to RP
EKr,i (K1,UE_Auth)

11.Generate nonce1 and then generate K1;K0 encrypts nonce1 and RP_Auth；EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth);obtain
RP_Auth result and nonce1;generate K1

15.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1362755889.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

1.AuthnOpenID request
OpenID identifier

2.Redirect request to OP
RP_credential

3.Redirected request to OP
RP_credential

5.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

14.Redirected to RP
EKr,o (K1,UE_Assert)

4.Authentication RP and genarate RP authenticate assertion;check of K0

13.Decrypt EK0(nonce1,RP_Assert);obtain
RP_Assert and nonce1; genarate K1

Establishment of shared secret Kr,o

11.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1362755062.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;Calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;obtain UE authentication result UE_Auth;Generate K0

1.Request
U_credential

2.Redirect request to IdP
U_credential,RP_credential

3.Redirected request to IdP
U_credential,RP_credential

5.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

14.Redirected to RP
EKr,i (K1,UE_Auth)

11.Generate nonce1 and then generate K1;K0 encrypts nonce1 and RP_Auth；EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth);obtain
RP_Auth result and nonce1;generate K1

15.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

