Page 1

3GPP TSG SA WG3 Security - SA3#60
(
 S3-100850
Montreal, Canada, 28 June - 2 July 2010

revision of S3-10xxxx
	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	33.924
	CR
	0017
	(

rev
	-
	(

Current version:
	9.2.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Corrections and clarifications to OpenID interworking

	
	

	Source to WG:
(

	Ericsson, ST-Ericsson

	Source to TSG:
(

	SA3

	
	

	Work item code:
(

	TEI9
	
	Date: (

	21/06/2010

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-9

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	Unambiguous specification text.

	
	

	Summary of change:
(

	A superfluous “may” is removed on text describing USS usage.Corrected incorrect internal reference and added reference to OpenID auth 2.0 specification in 4.4.2.3 and 4.4.2.4.

Clarified that the dialogue box is for HTTP digest authentication in 4.4.2.4.

Clarified that the optional PIN code is not the PIN code to allow access to the USIM but a PIN code local to the UE.

Some other corrections.

	
	

	Consequences if
(

not approved:
	Unambiguous specification text may lead to interoperability problems.

	
	

	Clauses affected:
(

	4.4.1, 4.4.2.3, 4.4.2.4

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

*** BEGIN CHANGES ***
4.4.1
Message Flow for direct GBA Interworking Scenario
In the following a message flow is defined to allow the interworking of the GBA Architecture and the OpenID Architecture as defined in clause 4.3 and focuses on the case where the browser resides in the ME: The case, where the browser does not reside in the ME, will be outlined in the next clause.

To initiate OpenID Authentication, the Relying Party should present the end user with a form that has a field for entering a User-Supplied Identifier. The form field's "name" attribute should have the value "openid_identifier".

1.
The browser in the ME sends a User-Supplied Identifier to the Relying Party.

2.
The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OP and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.

3.
The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can sign subsequent messages and the RP can verify those messages. The protocol between the OP and the RP lies outside of the 3GPP specifications, but for security reasons it is recommended to secure the RP OP interface properly
NOTE1:
This association using Diffie Hellman is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems strongly advisable.

4.
The RP redirects the ME’s browser to the OP with an OpenID Authentication Request as defined in chapter 9 in [8]. The RP inserts into the openid.claimed_id and into the openid.identity fields the user supplied identifier of step 1.
5.
The UE sends a HTTP GET request to the OP

6.
The NAF initiates the ME authentication and responds with a HTTPS response code 401 “Unauthorized”, which contains a WWW Authenticate header carrying a challenge requesting the UE to use Digest Authentication with GBA as specified in TS 33.222 [5] with server side certificates.

7.
If no valid Ks is available, then the UE bootstraps with the BSF as described in TS 33.220 [2], which results in the possession of the UE of a valid Ks. From this the UE can derive the application specific (OpenID specific) Ks_(ext/int)_NAF key(s).

8.
The ME generates a HTTP GET request to the NAF. The HTTP request carries an authorization header containing the B-TID received from the BSF.

NOTE2:
If GBA push is used, the B-TID is not received from the BSF, but part of the GPI contains the P-TID which is used instead of the B-TID.

9.
Using the B-TID and NAF_ID the NAF retrieves the shared application specific NAF key and optionally the USS (if GBA_U i.e. Ks_int/ext_NAF are used then the GUSS must be supported) from the BSF over the web service based Zn reference point. For details see TS 29.109 [7]. The NAF stores the B-TID, the cryptographic keys and the user supplied identifier to allow matching of the OpenID user session and the GBA session.
Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zn reference point.

NOTE3:
It is assumed that the OPs are more likely to support web service based reference points then Diameter based reference points.

The OP/NAF may have received a USS containing authorization information. The OP establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS. The USS may thereby act as a central authorization and privacy data store. In particular, the USS may contain information about the type of information are allowed to be shared with the relaying party. This authorization information may be contributed by the user but also by the operator based on their business relationship with the relaying party.
10.
NAF/OP authenticates the user for OpenID using TS 33.222 section 5.3. The NAF redirects the browser to the return OpenID address i.e. the OP redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion which may be protected by the shared secret between OP and RP. The protection is especially important if the OP and the RP do not reside both in the same MNO network.
NOTE4:
At this point, the interworking diverges slightly from TS 33.222. In TS 33.222 the NAF responds with a 200 OK message.

11.
The RP validates the assertion i.e. checks if the authentication was approved. The authenticated identity of the user is provided in the response message towards the RP. If a shared secret (association) was established in step 3, then it is now used to verify the message from the OP: If the validation of the assertion and the verification of the message (if the shared secret was used) are successful, then the user is logged in to the service of the RP.

If an operator deploys GBA Push as specified by [6] and not GBA, then the MNO may wish to establish the shared secret according to [6]. The step 7 would then be replaced by the GBA credential push message, after that the ME and NAF continue as outlined above.

The figure below outlines the message flow just described:

[image: image1.wmf]

1. User

-

Supplied

-

Identifier

4. Redirect ME browser to OP with

OpenID Authentication Request.

BSF

OP

/NAF

 UE

3 Es

tablishment of

shared secret (opt)

8. HTTPS Request containing B

-

TID

5. HTTPS GET

Request

 7. Bootstrapping run

according to [2]

6. ME authenticate

request

 9. NAF retrieves ke

ys and related

information e.g. lifetime, GUSS, etc.

OP/NAF authenticates the user

 RP

2. Retrieval of OP

address

 10. Redirect ME browser to RP together

with authentication assertion

11. RP validates

assertion

Figure 4.4.1-1
Interworking message flow for GBA / OpenID

4.4.2
Message Flow for Split Terminal GBA Interworking Scenario

*** NEXT CHANGES ***
4.4.2.3
Scenarios not using cryptographic binding

Scenario 1:

In the first scenario the GBA session is initiated asynchronously by the server on the authenticating agent AA via a GBA push message. Scenario 1 involves the use of a GBA push challenge which is pushed from the OP/NAF to the AA agent. The high level flow of operations for this scenario is described in Figure 4.4.2-1. Note, that the GBA Push challenge is not an HTTP response and the figure below does not contain all details.

[image: image2.emf]

NAF/OP

BA AA

Initial HTTP request following OpenID redirect

HTTP Response Session ID

Session ID+GBA push challenge

 HTTP Request Challenge as proof of processing

HTTP redirect to OpenID success or failure address

Mapping of BA / AA

Sessions by the user

After OpenID set-up:

Continue OpenID with RP

 HTTP Request Challenge

HTTP Response requesting AA Id

HTTP Request containg AA Id

Figure 4.4.2-1: Scenario 1: Use of GBA push challenge

Scenario 2:

In the second scenario a GBA session is initiated asynchronously by the server on the authenticating agent AA via a general push message. The scenario 2 involves the use of a general push request from the OP/NAF to the AA, triggering the AA to initiate a GBA session. The high level flow of operations for this scenario is described in Figure 4.4.2-2. Note that the main differences between the scenarios are outlined and not all details are illustrated.

[image: image3.emf]

NAF/OP

BA AA

Initial HTTP request following OpenID redirect

HTTP Response Session ID

Push messsage with

SessionID + trigger event to start GBA session

HTTP request start GBA authentication

GBA challenge

HTTP redirect to OpenID success or failure address

HTTP(S) GBA challenge Response Containing B-TID

Mapping of

BA and AA

Mapping of BA / AA

Sessions by the user

After OpenID set-up:

Continue OpenID with RP

HTTP Response requesting AA Id

HTTP Request containin g AA Id

HTTP Request

Figure 4.4.2-2: Scenario 2: Use of push request to trigger GBA session

Scenario 3:
In a third scenario, the GBA session is initiated by the authenticating agent. This scenario includes the approach, where the BA and the AA can utilize a local communication link to exchange a session identifier. This scenario involves local communication between the AA and the BA to share a session ID token generated by the OP/NAF. Following the retrieval of this session id token from the BA, the AA will initiate a GBA session with the NAF, providing the session ID token. Once GBA authentication is completed, the BA will be redirected to the OpenID success or failure URL. The high level flow of operations for this scenario for this scenario is described in Figure 4.4.2-3.

In this scenario, the AA and BA need to be securely connected and authenticated to each other, for example they may use a cable connection or BT Security.

Alternatively, the local communication may utilize GBA based security as outlined in TS 33.259 [14]. The BA would act as the remote device and the AA would take the role of the UICC holding device. If the BA has no valid Ks_local_device available, then the AA and the BA have to obtain the Ks_local_device as described in TS 33.259. This procedure results in the possession of the AA and BA of a valid Ks_local_device. The ME and GBA Agent can communicate in secure channel based using the Ks_local_device key..
NOTE 1:
The case where the AA sends the Ks_(ext)_NAF through a secure tunnel to the BA and the BA is using the credential is covered by the normal OpenID-GBA interworking. The OP would only exchange messages with the BA for Ks_(ext)_NAF usage and from the OP point of view the BA/AA would be treated then as one entity and would correspond to the variant described in 4.4.1.

[image: image4.emf]

NAF/OP

BA AA

Initial HTTP request following OpenID redirect

HTTP Response Session ID

HTTP request start GBA authentication

GBA challenge

HTTP redirect to OpenID success or failure address

HTTP(S) GBA challenge Response

Containing B-TID

Mapping of

BA and AA

SessionID through secure

Local link

After OpenID set-up:

Continue OpenID with RP

HTTP Response requesting AA Id

HTTP Request giving AA Id

HTTP Request

Figure 4.4.2-3: Scenario 3: linking of AA and BA sessions via session ID transferred from AA to BA
In the following a message flow is defined to allow the interworking of the GBA Architecture and the OpenID Architecture as defined in clause 4.3 and focuses on the scenarios where there is an Authenticating Agent (AA) and a Browsing Agent (BA) that do not reside in the same physical entity (the case where both reside in the same entity can be found in clause 4.4.1).

The message flow in scenarios 1 and 2 will involve asynchronous notification of the authenticating Agent (AA). When registering to the OpenID service using a split terminal scenario, then the user has to provide information of how to contact the AA i.e. phone number and operator. This information is mapped to the User-Supplied-Identifier. If no split terminal scenario is utilized, then this information is not required.

To initiate OpenID Authentication, the Relying Party should present the end user with a form that has a field for entering a User-Supplied Identifier. The form field's "name" attribute should have the value "openid_identifier" as specified in [8].

Message flow for scenario 1

1. The Browser Agent sends a User-Supplied Identifier to the Relying Party.

2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OpenID Provider (OP) and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can secure subsequent messages and the RP can verify those messages.
NOTE 2:
This association is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems advisable.

4. The RP redirects the Browsing Agent to the OP with an OpenID Authentication Request as defined in chapter 9 in [8].
NOTE 3: The following steps till step 13 differ in the three scenarios.

5. Following this redirection the BA sends a HTTP GET request to the OP/NAF. In order to indicate to the OP/NAF which scenario should be used, the request contains indication "AA not connected".

6. The OP/NAF may send a HTTP response to the BA asking the user to enter an AA identifier, e.g. his or her phone number or any other suitable OpenID identifier which can be mapped to the AA by the OP/NAF due to prior registration of this identifier.
7. After the user has entered the AA identifier the BA sends a second HTTP request to the OP/NAF carrying this AA identifier.
Steps 6 and 7 are only allowed if the user has entered OP identifier as User-Supplied Identifier which means that there is no information about the user in the User-Supplied Identifier. In such case, to complete the authentication process using GBA push, the OP/NAF needs the MSISDN of the AA. On the other hand, if the User-Supplied identifier identifies the user, then there needs to be an association between the User-Supplied Identifier and the MSISDN in the OP/NAF, and for such case steps 6 and 7 are not allowed.

NOTE 3a: This allows the user to remain anonymous towards the RP while still allowing GBA authentication.
8. The NAF generates an authentication session identifier. The NAF sends a session identifier to the BA.
NOTE 4:
Depending on the implemented scheme, there might be different ways to pass the session identifier. One approach to send the session identifier is to use the realm attribute in the WWW-Authenticate header (see RFC 2617 [17]) in an HTTP Response. If the NAF intends to populate the field with further information, then the session identifier should be at the end and separated with a ";".Alternatively, the session ID could be carried in the main body of the response for display by the BA.

Scenarios 1: The NAF identifies the AA associated to the BA. This association is based on OP/NAF asking the AA identifier from the user as described in steps 6 and 7, or it has been defined previously, possibly at the time where the user has created his OpenID account and enabled usage of GBA (This might be part of the registration procedure, which is out of the scope of the present TR). The AA is identified by an endpoint address i.e. MSISDN which is itself dependant of the communication scheme used to push the GBA push message.

NOTE 5: The session identifier might be alphanumeric or a graphic or picture (or reference to one).
9. Scenario 1: The NAF requests the shared key from the BSF as described in TS 33.223 [6] and TS 29.109 [7]. The OP/NAF may have received a USS containing authorization information. The OP/NAF establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS.
Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zpn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zpn reference point.
NOTE 6:
It is assumed that the OPs are more likely to support web service based reference points then Diameter based reference points.

10. Scenario 1: The NAF/OP initiates a GBA push request to the AA. This push message contains a GPI used to establish a NAF SA. This request contains also the session identifier and the contact address of the OP/NAF Fully Qualified Domain Name (FQDN).

NOTE 7:
The GPI may need to be encapsulated in a higher level protocol enabling to carry the additional information (session identifier and NAF FQDN)
11. Scenario 1: The AA and the BA session have to be mapped by the user and give consent to continue with GBA push authentication.

NOTE 8:
The session identifier is used to make the link between the BA session and the AA session in order to avoid unauthorized use of GBA authentication. The way this session identifier is processed can vary In scenario 1 the session identifier may be displayed by both the AA and the BA. The user may visually check that the 2 identifiers displayed match.

NOTE 9:
The actual methods of linking e.g. PIN, picture comparison is out of scope of this document.

12. Scenario 1: The Ks is derived as outlined in TS 33.223 [6]. Either way this results in the possession by the UE of a valid Ks. From this the UE can derive the application specific (OpenID specific) Ks_(ext/int)_NAF key(s). The key generation may be protected with a PIN code

NOTE 10:
 In scenario 1 a PIN code or a manual user action is required to prevent risk of unauthorized background usage of the GBA authentication. The optional PIN code is not the PIN which guards access to the USIM but a PIN code local to the AA.

NOTE 11:
When GBA push is used, then the B-TID is not received from the BSF, but part of the GPI contains the P-TID which is used instead of the B-TID. The P-TID is the GBA Push mirror to the B-TID.

13. Scenario 1: The AA responds to the NAF using the P-TID included in the GPI received from the NAF. The P-TID will point to a specific NAF SA in the NAF. The message is a HTTP Request.

NOTE 12:
 In scenario 1, the response from the UE serves the purpose to prove to the NAF that the challenge carried by the GPI has been processed successfully.
14. Scenario 1: The BA sends a HTTP Request to the OP/NAF. This may be done explicitly by the user or may be done automatically by the browser without further user interaction

NOTE12a: The purpose of this message is that the OP is able to redirect the BA.
15. Scenario1: After getting proof of GPI processing, the OP/NAF redirects the BA to the return OpenID address i.e. the OP redirects the BA back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion. If the user only provided the OP Identifier as User-Supplied Identifier to the RP in step 1, it is the responsibility of the OP/NAF to fill the Claimed Identifier field based on user authentication and send this information to the RP.
16. The service provider (RP) checks the assertion (i.e. checks if the authentication was approved) possibly using previously defined shared secrets with the OpenId provider or by direct interrogation of the OpenID provider. Then the user is logged in to the service of the RP.

Figure 4.4.2-4 describes the detailed messages flow for scenario 1 involving the use of GBA push messages.

[image: image5.emf]

NAF/OP

BA

AA

1- User supplied identifier

BSF

RP

2-Retrieval of OP address

3- Setup of shared

Secret(opt)

4- redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

8- OP maps BA to AA

8-HTTP Response with Session ID

10-Push message for AA. Includes GBA push GPI, session ID, and NAF/OP contact address.

13-HTTP GET with P-TID + proof of challenge processing

11- User visually maps AA and BA sessions

9- NAF retrieves keys and related information e.g lifetime,GUSS,etc OP/NAF authenticates the user.

15-Redirect to RP with authentication assertion

12- GPI processing

Derive NAF key(s)

16-Check of assertion

7- HTTP(S) GET request with AA identifier

6- HTTP(S) response with AA ide ntifier request

14- HTTP(S) GET request

Figure 4.4.2-4: Detailed flow of operations for scenario1 (GBA push)

Message flow for scenarios 2 and 3
1. The Browser Agent sends a User-Supplied Identifier to the Relying Party.

2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OpenID Provider (OP) and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can secure subsequent messages and the RP can verify those messages.
NOTE 13:
This association is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems advisable.

4. The RP redirects the Browsing Agent to the OP with an OpenID Authentication Request as defined in chapter 9 in [8].
5. Following this redirection the BA sends a HTTP GET request to the OP/NAF. In order to indicate to the OP/NAF which scenario should be used, for Scenario 2 the BA inserts an indication "AA not connected" and for Scenario 3 an indication "AA connected" is added.
NOTE 14:
The steps 6 to 13 vary from scenario 1.

6. Scenario 2: The OP/NAF may send a HTTP response to the BA asking the user to enter an AA identifier, e.g. his or her phone number or any other suitable OpenID identifier which can be mapped to the AA by the OP/NAF due to prior registration of this identifier.
7. Scenario 2: After the user has entered the AA identifier the BA sends a second HTTP request to the OP/NAF carrying this AA identifier.
Steps 6 and 7 are only allowed if the user has entered OP identifier as User-Supplied Identifier which means that there is no information about the user in the User-Supplied Identifier. In such case, to complete the authentication process using GBA push, the OP/NAF needs the MSISDN of the AA. On the other hand, if the User-Supplied identifier identifies the user, then there needs to be an association between the User-Supplied Identifier and the MSISDN in the OP/NAF, and for such case steps 6 and 7 are not allowed.

NOTE 14a: This allows the user to remain anonymous towards the RP while still allowing GBA authentication.
8. The NAF generates an authentication session identifier. The NAF sends a session identifier to the BA.
NOTE 15:
Depending on the implemented scheme, there might be different ways to pass the session identifier. One approach to send the session identifier is to use the realm attribute in the WWW-Authenticate header (see RFC 2617 [17]) in an HTTP response message. If the NAF intends to populate the field with further information, then the session identifier should be at the end and separated with a ";". Alternatively, the session ID could be carried in the main body of the response for display by the BA.

Scenario 2 and 3: The NAF identifies the AA associated to the BA. This association is based on OP/NAF asking the AA identifier from the user as described in steps 6 and 7, or it has been defined previously, possibly at the time where the user has created his OpenID account and enabled usage of GBA (This might be part of the registration procedure, which is out of the scope of the present TR). The AA is identified by an endpoint address i.e. MSISDN which is itself dependant of the communication scheme used to push the authentication triggering message.

NOTE 16: The session identifier might be alphanumeric or a graphic or picture (or reference to one).
9. In this step scenarios 2 and 3 differ as follows:
7a) Scenario 2: The NAF/OP initiates a push request to the AA. This request is just used to notify the AA to initiate a GBA authentication session with the NAF.
7b) Scenario 3: The BA pushes the session identifier and the NAF contact address to the AA via the local link. If the BA and the AA have an established secure tunnel e.g. using TS 33.259 [14], then this could be utilized to send the session ID and the NAF contact address to the AA.
NOTE 17:
The most common approach here is to use SMS for the push message to the AA, but also other Push methods might be used like WAP Push, SIP.
10. Scenario 2 and 3: The AA receives the push message either from the BA or from the NAF. Upon reception of this push message, the AA and the BA session have to be mapped in order to avoid unauthorized use of GBA authentication. In scenario 2 the user has to do this and give consent to continue with GBA authentication. In scenario 3, this may implicitly be done by using a secure connection between AA and BA and transferring the session identifier.

NOTE 18:
The session identifier is used to make the link between the BA session and the AA session. The way this session identifier is processed varies according to the scenario:
In scenario 2, the session identifier may be displayed by both the AA and the BA. The user may visually check that the 2 identifiers displayed match.
In Scenario 3, the Session identifier provided by the OP/NAF to the BA is presented by the AA to the BA. The link between the two sessions can therefore be made at the NAF/OP level without the user being involved in the matching operation.
NOTE 19:
In scenario 2, a PIN code or other manual user action is required to prevent risk of unauthorized background usage of the GBA authentication.
In Scenario 3, the need of setting up a local link between the AA and the BA may result from a manual operation and the use of a manual user operation (PIN or key pressing) may be optional.

NOTE 20:
Scenario 2 and 3: The actual methods of linking e.g. PIN, picture comparison is out of scope of this document. The optional PIN code is not the PIN which guards access to the USIM but a PIN code local to the AA.
11. Scenario 2 and 3: Upon successful matching of session identifies (and receiving the user’s consent in scenario 2) the AA will initiate an GBA bootstrapping run according to TS 33.220 [2] (if no valid shared key is available) and then perform a HTTP based GBA authentication with the OP/NAF according to TS 33.222 as outlined in step 10. To that end, the AA sends then an HTTP GET request to the OP/NAF address contained in the push message.

12. Scenario 2 and 3: The NAF initiates AA authentication by responding with an HTTP response code 401 "Unauthorized" which contains a WWW-Authenticate header carrying a challenge requesting the AA to use Digest authentication with GBA as specified in TS 33.222 [5] with server side certificates. The "realm" attribute starts with the prefix "3GPP-bootstrapping@" or "3GPP-bootstrapping-uicc@".
13. Scenario 2 and 3: If no valid Ks is available, available to the AA, then the AA bootstraps with the BSF as described in TS 33.220 [2]. If a valid Ks key exists, than the AA computes the NAF specific key Ks_(ext/int)_NAF.

14. Scenario 2 and 3: The AA generates a HTTP GET request to the NAF/OP. The request carries an authorization header carrying the B-TID received from the BSF and a response to the challenge received in step 9 and computed with the (Ks_(ext/int)_NAF.

15. Scenario 2 and 3: Using the B-TID, and its NAF-ID, the NAF retrieves the shared key Ks_(ext/int)_NAF and optionally the USS (if GBA_U is used, than the GUSS must be supported) from the BSF using the Zn interface, for details see TS 29.109 [7].

Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zn reference point.
NOTE 21:
It is assumed that the OPs are more likely to support web service based reference points then Diameter based reference points.

The OP/NAF may have received a USS containing authorization information. The OP establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS.
16. Scenario 2 and 3: The BA sends a HTTP Request to the OP/NAF. This may be done explicitly by the user or may be done automatically by the browser without further user interaction or triggered by the AA if local communication is available (i.e. scenario 3).

NOTE21b: The purpose of this message is that the OP is able to redirect the BA.
17. Scenario 2 and 3: The OP/NAF authenticates the user for OpenID using TS 33.222 [5] section 5.3. Then the NAF redirects the browser to the return OpenID address i.e. the OP redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion. If the user only provided the OP Identifier as User-Supplied Identifier to the RP in step 1, it is the responsibility of the OP/NAF to fill the Claimed Identifier field based on user authentication and send this information to the RP.
NOTE 22:
At this point, the interworking diverges slightly from TS 33.222. In TS 33.222 the NAF responds with a 200 OK message directly to the UE, here the BA does not reside in the UE.

18. The service provider (RP) checks the assertion (i.e. checks if the authentication was approved) possibly using previously defined shared secrets with the OpenID provider or by direct interrogation of the OpenID provider. Then the user is logged in to the service of the RP.

[image: image6.emf]

NAF/OP

BA

AA

1- User supplied identifier

BSF

RP

2-Retrieval of OP address

3- Setup of shared

Secret (opt)

4- redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

11-HTTP GET + Session ID (Initiate GBA authentication)

12-401 unauthorized+ GBA challenge

13- Optional bootstrapping

14-HTTP(S) request carrying B-TID

15- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

17-Redirect to RP with authentication assertion

9b-Setting up secure tunnel and AA receives Session ID via local link

18-Check of assertion

9a – Push message for AA to initíate GBA authentication (includes session ID)

10-Session ID mapping

8- OP maps BA to AA

7- HTTP(S) GET request with AA identifier

6- HTTP(S) response with AA identifier request

8- HTTP(S) response with Session ID

16- HTTP(S) GET request

Figure 4.4.2-5: Detailed flow of operations for scenario 2 and 3 (push message from OP/NAF or BA to trigger GBA authentication)

NOTE 23:
In Scenario 1 and 2 in order to prevent a Denial of Service attack against the terminal that consists out of malicious push messages to the AA the NAF/OP can monitor frequent failed or unfinished authentication attempts and abort the procedure or introduce an artifical delay. Alternatively, a pre-shared password authentication might be utilized before the session identifier is sent to the BA in step 6, but impacts the SSO user experience.
4.4.2.4
Scenarios using cryptographic binding

Scenario 1

In the first scenario the GBA session is initiated asynchronously by the server on the authenticating agent AA via a GBA push message. Scenario 1 involves the use of a GBA push challenge which is pushed from the OP/NAF to the AA agent. The high level flow of operations for this scenario is described in Figure 4.4.2-6. Note, that the GBA Push challenge is not an HTTP(S) response and the figure below does not contain all details.

[image: image7.emf]

NAF/OP

BA AA

Initial HTTP(S) request following OpenID redirect

HTTP(S) Unauthorized Response

GBA push challenge +

Nonce

NAF

 HTTP(S) request with Authorization header

HTTP(S) redirect to OpenID success or failure address

User copies Nonce

AA

 and

password

After OpenID set-up:

Continue OpenID with RP

Generate Nonce

AA

 and password

Mapping of BA and AA

Figure 4.4.2-6: Scenario 1: Use of GBA push challenge

Scenario 2:

In the second scenario a GBA session is initiated asynchronously by the server on the authenticating agent AA via a general push message. The scenario 2 involves the use of a general push request from the OP/NAF to the AA, triggering the AA to initiate a GBA session. The high level flow of operations for this scenario is described in Figure 4.4.2-2. Note that the main differences between the scenarios are outlined and not all details are illustrated.

[image: image8.emf]

NAF/OP

BA AA

Initial HTTP(S) request following OpenID redirect

HTTP(S) Unauthorized Response

Push message + trigger event to start GBA session

HTTP(S) request start GBA authentication

HTTP(S) response with Nonce

NAF

HTTP(S) request with Authorization header

HTTP(S) GBA challenge Response

with B-TID

Mapping of BA and AA

User copies Nonce

AA

 and

password

After OpenID set-up:

Continue OpenID with RP

HTTP(S) redirect to OpenID success or failure address

HTTP(S) GBA challenge

Generate Nonce

AA

 and password

Figure 4.4.2-7: Scenario 2: Use of push request to trigger GBA session

Scenario 3:

In a third scenario, the GBA session is initiated by the authenticating agent. This scenario includes the approach, where the BA and the AA can utilize a local communication link. Once GBA authentication is completed, the BA will be redirected to the OpenID success or failure URL. The high level flow of operations for this scenario for this scenario is described in Figure 4.4.2-8.

In this scenario, the AA and BA need to be securely connected and authenticated to each other, for example they may use a cable connection or BT Security.

Alternatively, the local communication may utilize GBA based security as outlined in TS 33.259 [14]. The BA would act as the remote device and the AA would take the role of the UICC holding device. If the BA has no valid Ks_local_device available, then the AA and the BA have to obtain the Ks_local_device as described in TS 33.259. This procedure results in the possession of the AA and BA of a valid Ks_local_device. The ME and GBA Agent can communicate in secure channel based using the Ks_local_device key.
NOTE 1:
The case where the AA sends the Ks_(ext)_NAF through a secure tunnel to the BA and the BA is using the credential is covered by the normal OpenID-GBA interworking. The OP would only exchange messages with the BA for Ks_(ext)_NAF usage and from the OP point of view the BA/AA would be treated then as one entity and would correspond to the variant described in 4.4.1.

[image: image9.emf]

NAF/OP

BA AA

Initial HTTP(S) request following OpenID redirect

HTTP(S) Unauthorized Response

HTTP(S) request start GBA authentication

HTTP(S) response with Nonce

NAF

HTTP(S) request with Authorization header

HTTP(S) GBA challenge Response

with B-TID

Mapping of BA and AA

Copy Nonce

AA

 and password

over local link

After OpenID set-up:

Continue OpenID with RP

HTTP(S) redirect to OpenID success or failure address

HTTP(S) GBA challenge

Generate Nonce

AA

 and password

GBA trigger over local link

Figure 4.4.2-8: Scenario 3: Use of local link to trigger GBA session
Scenario 4:

In the fourth scenario a GBA session is initiated asynchronously by the user on the authenticating agent AA. In this scenario the OP/NAF sends OP/NAF URL to the BA which is displayed to the user who then triggers the AA to initiate a GBA session. The high level flow of operations for this scenario is described in Figure 4.4.2-x. Note that the figure only outlines the main differences between the scenarios and does not all details.

[image: image10.emf]

NAF/OP

BA AA

Initial HTTP(S) request following OpenID redirect

HTTP(S) Unauthorized Response

HTTP(S) request start GBA authentication

HTTP(S) response with Nonce

NAF

HTTP request with Authorization header

HTTP(S) GBA challenge Response

with B-TID

Mapping of BA and AA

User copies Nonce

AA

 and

password

After OpenID set-up:

Continue OpenID with RP

HTTP redirect to OpenID success or failure address

HTTP(S) GBA challenge

Generate Nonce

AA

 and password

User initiates GBA authentication

Figure 4.4.2-9: Scenario 4: User initiates GBA authentication
In the following a message flow is defined to allow the interworking of the GBA Architecture and the OpenID Architecture as defined in clause 4.3 and focuses on the scenarios where there is an Authenticating Agent (AA) and a Browsing Agent (BA) that do not reside in the same physical entity (the case where both reside in the same entity can be found in clause 4.4.1).

The message flow in scenarios 1 and 2 will involve asynchronous notification of the authenticating Agent (AA). When registering to the OpenID service using a split terminal scenario, then the user has to provide information of how to contact the AA i.e. phone number and operator. This information is mapped to the User-Supplied-Identifier. If no split terminal scenario is utilized, then this information is not required.

To initiate OpenID Authentication, the Relying Party should present the end user with a form that has a field for entering a User-Supplied Identifier. The form field's "name" attribute should have the value "openid_identifier" as specified in [8].

Message flow for scenario 1

1. The Browser Agent sends a User-Supplied Identifier to the Relying Party.

2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OpenID Provider (OP) and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can secure subsequent messages and the RP can verify those messages.
NOTE 2:
This association is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems advisable.

4. The RP redirects the Browsing Agent to the OP with an OpenID Authentication Request as defined in chapter 9 in [8].
NOTE 3: The following steps till step 16 differ in the three scenarios.

5. Following this redirection the BA sends a HTTP(S) GET request to the OP/NAF. In order to indicate to the OP/NAF which scenario should be used, the request contains indication “AA not connected”.

6. The OP/NAF may send a HTTP response to the BA asking the user to enter an AA identifier, e.g. his or her phone number or any other suitable OpenID identifier which can be mapped to the AA by the OP/NAF due to prior registration of this identifier.
7. After the user has entered the AA identifier the BA sends a second HTTP request to the OP/NAF carrying this AA identifier.
Steps 6 and 7 are only allowed if the user has entered OP identifier as User-Supplied Identifier which means that there is no information about the user in the User-Supplied Identifier. In such case, to complete the authentication process using GBA push, the OP/NAF needs the MSISDN of the AA. On the other hand, if the User-Supplied identifier identifies the user, then there needs to be an association between the User-Supplied Identifier and the MSISDN in the OP/NAF, and for such case steps 6 and 7 are not allowed.

NOTE 4: This allows the user to remain anonymous towards the RP while still allowing GBA authentication.
8. Scenario 1: The NAF identifies the AA associated to the BA. This association is based on OP/NAF asking the AA identifier from the user as described in steps 6 and 7, or it has been defined previously, possibly at the time where the user has created his OpenID account and enabled usage of GBA (This might be part of the registration procedure, which is out of the scope of the present TR). The AA is identified by an endpoint address i.e. MSISDN which is itself dependant of the communication scheme used to push the GBA push message.
9. Scenario 1: The NAF sends an HTTP(S) unauthorized response to the BA. The BA displays an HTTP Digest Authentication dialogue box to the user.
10. Scenario 1: The NAF requests the shared key from the BSF as described in TS 33.223 [6] and TS 29.109 [7]. The OP/NAF may have received a USS containing authorization information. The OP/NAF establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS.
Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zpn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zpn reference point.
NOTE 5:
It is assumed that the OPs are more likely to support web service based reference points than Diameter based reference points.

11. Scenario 1: The NAF generates NonceNAF which will be used to contruct the session security identifier. The NAF/OP initiates a GBA push request to the AA. This push message contains a GPI used to establish a NAF SA. This request contains also the NonceNAF.

NOTE 6:
The GPI may need to be encapsulated in a higher level protocol enabling to carry the additional information (NonceNAF)
12. Scenario 1: Upon receiving the GBA push message including the GPI the Ks is derived as outlined in TS 33.223 [6]. Either way this results in the possession by the AA of a valid Ks. From this the AA can derive the application specific (OpenID specific) Ks_(ext/int)_NAF key(s). The key generation may be protected with a PIN code.
The AA generates short NonceAA of 4 digits in length (when coded in alphanumeric) and calculates the session security identifier as follows:
session security identifier = KDF(NonceAA, Ks(ext)_NAF, NonceNAF). The KDF is specified in TS 33.220 [2].

The AA displays the NonceAA as username and 4 first digits of the session security identifier (when coded in alphanumeric) as passwordso that the user can copy them to the BA.

NOTE 7: From the usability point of view it is essential that the username and the password are both short enough so that the user can copy them over.
NOTE 8:
 In scenario 1 a PIN code or a manual user action is required to prevent risk of unauthorized background usage of the GBA authentication. The optional PIN code is not the PIN which guards access to the USIM but a PIN code local to the AA.

NOTE 9:
When GBA push is used, then the B-TID is not received from the BSF, but part of the GPI contains the P-TID which is used instead of the B-TID. The P-TID is the GBA Push mirror to the B-TID.

13. Scenario 1: User copies the NonceAA as username and the part of the session security identifier as password from the AA to the BA into the HTTP Digest Authentication dialogue box presented to the user in step 7.

14. Scenario 1: The BA calculates Authorization header values using the NonceAA as username and the part of the session security identifier as password. The BA sends HTTP(S) request with Authorization header to the OP/NAF.

15. Scenario1: After receiving the HTTP(S) GET the OP/NAF calculates the session security identifier in the same way as the AA calculated it in step 10. The OP/NAF then authenticates BA by calculating the corresponding digest values and verifies the Authorization header by using the NonceAA and the part of the security session identifier.
16. Scenario1: After getting proof of GPI processing, the OP/NAF redirects the BA to the return OpenID address i.e. the OP redirects the BA back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion. If the user only provided the OP Identifier as User-Supplied Identifier to the RP in step 1, it is the responsibility of the OP/NAF to fill the Claimed Identifier field based on user authentication and send this information to the RP.
17. The service provider (RP) checks the assertion (i.e. checks if the authentication was approved) possibly using previously defined shared secrets with the OpenId provider or by direct interrogation of the OpenID provider. Then the user is logged in to the service of the RP.

Figure 4.4.2-10 describes the detailed messages flow for scenario 1 involving the use of GBA push messages.

[image: image11.emf]

NAF/OP

BA

AA

1- User supplied identifier

BSF

RP

2-Retrieval of OP address

3- Setup of shared

Secret (opt)

4- Redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

8- OP maps BA to AA

From its database

9- HTTP(S) Unauthorized Response

11- GBA Push message to AA with push GPI and Nonce

NAF

13- User copies Nonce

AA

and password from AA to BA

10- NAF retrieves keys and relate d information e.g. lifetime, GUSS, etc

16-Redirect to RP with authentication assertion

12- GPI processing

Derive NAF key(s)

Calculate Session ID

17-Check of assertion

14- HTTP(S) GET request with Authorization header

15- Authenticate BA

7- HTTP(S) GET request with AA identifier (opt)

6- HTTP(S) response with AA identifier request (opt)

Figure 4.4.2-10: Detailed flow of operations for scenario1 (GBA push)

Message flow for scenarios 2, 3 and 4
1. The Browser Agent sends a User-Supplied Identifier to the Relying Party.

2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OpenID Provider (OP) and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can secure subsequent messages and the RP can verify those messages.
NOTE 10:
This association is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems advisable.

4. The RP redirects the Browsing Agent to the OP with an OpenID Authentication Request as defined in chapter 9 in [8].
5. Following this redirection the BA sends a HTTP GET request to the OP/NAF. In order to indicate to the OP/NAF which scenario should be used, for Scenario 2 and 4 the BA inserts an indication “AA not connected” and for Scenario 3 an indication “AA connected” is added.
NOTE 11:
The steps 6 to 13 vary from scenario 1.

6. Scenario 2 and 4: The OP/NAF may send a HTTP response to the BA asking the user to enter an AA identifier, e.g. his or her phone number or any other suitable OpenID identifier which can be mapped to the AA by the OP/NAF due to prior registration of this identifier.
7. Scenario 2 and 4: After the user has entered the AA identifier the BA sends a second HTTP request to the OP/NAF carrying this AA identifier.
Steps 6 and 7 are only allowed if the user has entered OP identifier as User-Supplied Identifier which means that there is no information about the user in the User-Supplied Identifier. In such case, to complete the authentication process using GBA push, the OP/NAF needs the MSISDN of the AA. On the other hand, if the User-Supplied identifier identifies the user, then there needs to be an association between the User-Supplied Identifier and the MSISDN in the OP/NAF, and for such case steps 6 and 7 are not allowed.

NOTE 12: This allows the user to remain anonymous towards the RP while still allowing GBA authentication.
8. Scenario 2, and 3 and 4: The NAF sends an HTTP(S) Unauthorized response to the BA. Additionally,

for scenario 2 the BA displays an HTTP Digest Authentication dialogue box to the user asking for authentication;
for scenario 3 the HTTP(S) message includes OP/NAF contact address which is to be transferred to the AA over the local link.
for scenario 4 the HTTP(S) message includes OP/NAF URL which is displayed to the user to be written by the user to AA’s browser and the BA displays an HTTP Digest Authentication dialogue box to the user asking for authentication.
9. Scenario 2 and 3 and 4: The NAF identifies the AA associated to the BA. This association is based on OP/NAF asking the AA identifier from the user as described in steps 6 and 7, or it has been defined previously, possibly at the time where the user has created his OpenID account and enabled usage of GBA (This might be part of the registration procedure, which is out of the scope of the present TR). The AA is identified by an endpoint address i.e. MSISDN which is itself dependant of the communication scheme used to push the authentication triggering message.

10. In this step scenarios 2 and 3 differ as follows:

10a) Scenario 2: The NAF/OP initiates a push request to the AA. This request is used to notify the AA to initiate a GBA authentication session with the OP/NAF. The push request includes the OP/NAF contact address.

10b) Scenario 3: The BA pushes the OP/NAF contact address to the AA via the local link. The need of setting up a local link between the AA and the BA may result from a manual operation. If the BA and the AA have an established secure tunnel e.g. using TS 33.259 [14], then this could be utilized.

10c) Scenario 4: If OP/NAF contact address (i.e. URL) was displayed to the user in step 8, the user writes the OP/NAF URL to the AA browser to initiate a GBA authentication session with the OP/NAF.

NOTE 13:
The most common approach here is to use SMS for the push message to the AA, but also other Push methods might be used like WAP Push, SIP.

11. Scenario 2 and 3 and 4: The AA receives the trigger to initiate GBA authentication either from the BA or from the NAF or from the user. Upon reception of this trigger, the AA may request user’s consent in order to avoid unauthorized use of GBA authentication.
In scenario 2 and 4 the user has to give consent to continue with GBA authentication, e.g. in the form of a PIN.
In scenario 3, PIN may be used, or consent may implicitly be given by using a secure connection between AA and BA and transferring the security session identifier, and the use of a manual user operation (PIN or key pressing) may be optional.

Upon receiving the trigger to initiate GBA authentication and possibly the user’s consent the AA will initiate an GBA bootstrapping run according to TS 33.220 [2] (if no valid shared key is available) and then perform a HTTP(S) based GBA authentication with the OP/NAF according to TS 33.222 as outlined in step 10. To that end, the AA sends then an HTTP GET request to the OP/NAF.
NOTE 13a: The optional PIN code is not the PIN which guards access to the USIM but a PIN code local to the AA.
12. Scenario 2 and 3 and 4: The NAF initiates AA authentication by responding with an HTTP response code 401 "Unauthorized" which contains a WWW-Authenticate header carrying a challenge requesting the AA to use Digest authentication with GBA as specified in TS 33.222 [5] with server side certificates. The "realm" attribute starts with the prefix "3GPP-bootstrapping@" or "3GPP-bootstrapping-uicc@".

13. Scenario 2 and 3 and 4: If no valid Ks is available to the AA, then the AA bootstraps with the BSF as described in TS 33.220 [2]. If a valid Ks key exists, than the AA computes the NAF specific key Ks_(ext/int)_NAF.

14. Scenario 2 and 3 and 4: The AA generates a HTTP GET request to the NAF/OP. The request carries an authorization header carrying the B-TID received from the BSF and a response to the challenge received in step 9 and computed with the (Ks_(ext/int)_NAF.

15. Scenario 2 and 3 and 4: Using the B-TID, and its NAF-ID, the NAF retrieves the shared key Ks_(ext/int)_NAF and optionally the USS (if GBA_U is used, than the GUSS must be supported) from the BSF using the Zn interface, for details see TS 29.109 [7]. The OP/NAF authenticates the user for OpenID using TS 33.222 [5] section 5.3.
Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zn reference point.
NOTE 14:
It is assumed that the OPs are more likely to support web service based reference points then Diameter based reference points.

The OP/NAF may have received a USS containing authorization information. The OP establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS.

16. Scenario 2 and 3 and 4: The NAF generates NonceNAF which will be used to contruct the security session identifier. In the HTTP(S) 200 OK message the OP/NAF sends the NonceNAF to the AA.

17. Scenario 2 and 3 and 4: The AA generates short NonceAA of 4 digits in length (when coded in alphanumeric) and calculates the security session identifier as follows:
security session identifier = KDF(NonceAA, Ks(ext)_NAF, NonceNAF). The KDF is specified in TS 33.220 [2].

The AA displays the NonceAA as username and and 4 first digits of the security session identifier as password to the user.

NOTE 15: From the usability point of view it is essential that the username and the password are both short enough so that the user can copy them over.

18. In this step scenarios 2, 3 and 4 differ as follows:

Step 18a and c: Scenario 2 and 4: User copies the NonceAA as username and the part of the security session identifier as password from the AA to the BA into the HTTP Digest Authentication dialogue box presented to the user in step 6. Step 15 will be triggered when the user has done this.

Step 18b: Scenario 3: The AA sends NonceAA as username and the part of the security session identifier as password from the AA over the local link to the BA to be used in HTTP Digest Authentication. No user interaction is required to trigger step 15 as the security session identifier can be automatically sent to BA’s browser.

19. Scenario 2 and 3 and 4: The BA calculates Authorization header values using the NonceAA as username and the part of the security session identifier as password. The BA sends an HTTP(S) request with Authorization header to the OP/NAF.

20. Scenario 2 and 3 and 4: After receiving the HTTP(S) GET the OP/NAF calculates the security session identifier in the same way as the AA calculated it is step 15. The OP/NAF then authenticates BA by calculating the corresponding digest values and verifies the Authorization header by using the NonceAA and security session identifier.

21. Scenario 2 and 3 and 4: The OP/NAF redirects the browser to the return OpenID address i.e. the OP/NAF redirects the BA’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion. If the user only provided the OP Identifier as User-Supplied Identifier to the RP in step 1, it is the responsibility of the OP/NAF to fill the Claimed Identifier field based on user authentication and send this information to the RP.
22. Scenario 2 and 3 and 4: The service provider (RP) checks the assertion (i.e. checks if the authentication was approved) possibly using previously defined shared secrets with the OpenID provider or by direct interrogation of the OpenID provider. Then the user is logged in to the service of the RP.

[image: image12.emf]

NAF/OP

BA

AA

1- User supplied identifier

BSF

RP

2- Retrieval of OP address

3- Setup of shared secret (opt)

4- Redirect ME browser to OP with OpenId authentication request

5- HTTP(S) GET request

8- HTTP(S) Unauthorized Response (opt : OP/NAF URL)

21- Redirect to RP with authentication assertion

10b- Setting up secure tunnel, sending GBA trigger via local link

22-Check of assertion

10a – Push message for AA to initíate GBA authentication (includes GBA trigger)

11- HTTP(S) GET (Initiate GBA authentication)

12- 401 unauthorized+ GBA challenge

13- Optional bootstrapping

14- HTTP(S) GET carrying B-TID

15- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

16- HTTP(S) RSP Nonce

NAF

18a, c- User copies Nonce

AA

and password from AA to BA

18b- AA sends Nonce

AA

and password to BA over local link

19- HTTP(S) GET request with Authorization header

17- Generate Nonce

AA

and session ID

20- Authenticate BA

9- Map BA to AA

10c – User writes OP/NAF URL to AA

7- HTTP(S) GET request with AA identifier (opt)

6- HTTP(S) response with AA identifier request (opt)

Figure 4.4.2-11: Detailed flow of operations for scenario 2, 3 and 4 (push message from OP/NAF or BA to trigger GBA authentication)

NOTE 16:
In Scenario 1 and 2 in order to prevent a Denial of Service attack against the terminal that consists out of malicious push messages to the AA the NAF/OP can monitor frequent failed or unfinished authentication attempts and abort the procedure or introduce an artifical delay. Alternatively, a pre-shared password authentication might be utilized, but this impacts the SSO user experience.
*** END OF CHANGES ***

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1334089938.doc

Continue OpenID with RP

After OpenID set-up:

SessionID through secure

Local link

Mapping of

BA and AA

HTTP(S) GBA challenge Response

Containing B-TID

HTTP redirect to OpenID success or failure address

GBA challenge

HTTP request start GBA authentication

HTTP Response Session ID

Initial HTTP request following OpenID redirect

AA

BA

NAF/OP

HTTP Response requesting AA Id

HTTP Request giving AA Id

HTTP Request

_1334128813.doc

Continue OpenID with RP

After OpenID set-up:

User copies NonceAA and password

Mapping of BA and AA

HTTP(S) GBA challenge Response

with B-TID

HTTP(S) request with Authorization header

HTTP(S) response with NonceNAF

HTTP(S) request start GBA authentication

Push message + trigger event to start GBA session

HTTP(S) Unauthorized Response

Initial HTTP(S) request following OpenID redirect

AA

BA

NAF/OP

HTTP(S) redirect to OpenID success or failure address

HTTP(S) GBA challenge

Generate NonceAA and password

_1334128891.doc

Continue OpenID with RP

After OpenID set-up:

User copies NonceAA and password

Mapping of BA and AA

HTTP(S) GBA challenge Response

with B-TID

HTTP request with Authorization header

HTTP(S) response with NonceNAF

HTTP(S) request start GBA authentication

User initiates GBA authentication

HTTP(S) Unauthorized Response

Initial HTTP(S) request following OpenID redirect

AA

BA

NAF/OP

HTTP redirect to OpenID success or failure address

HTTP(S) GBA challenge

Generate NonceAA and password

_1334128959.doc

14- HTTP(S) GET request with Authorization header

17-Check of assertion

12- GPI processing

Derive NAF key(s)

Calculate Session ID

16-Redirect to RP with authentication assertion

10- NAF retrieves keys and related information e.g. lifetime, GUSS, etc

13- User copies NonceAA

and password from AA to BA

11- GBA Push message to AA with push GPI and NonceNAF

9- HTTP(S) Unauthorized Response

8- OP maps BA to AA

From its database

5- HTTP(S) GET request

4- Redirect ME browser to OP with OpenId authentication request

3- Setup of shared

Secret (opt)

2-Retrieval of OP address

RP

BSF

1- User supplied identifier

AA

BA

NAF/OP

15- Authenticate BA

6- HTTP(S) response with AA identifier request (opt)

7- HTTP(S) GET request with AA identifier (opt)

_1334129000.doc

19- HTTP(S) GET request with Authorization header

18b- AA sends NonceAA and password to BA over local link

18a, c- User copies NonceAA and password from AA to BA

16- HTTP(S) RSP NonceNAF

15- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

14- HTTP(S) GET carrying B-TID

13- Optional bootstrapping

12- 401 unauthorized+ GBA challenge

11- HTTP(S) GET (Initiate GBA authentication)

10c – User writes OP/NAF URL to AA

10a – Push message for AA to initíate GBA authentication (includes GBA trigger)

22-Check of assertion

10b- Setting up secure tunnel, sending GBA trigger via local link

21- Redirect to RP with authentication assertion

8- HTTP(S) Unauthorized Response (opt : OP/NAF URL)

5- HTTP(S) GET request

4- Redirect ME browser to OP with OpenId authentication request

3- Setup of shared secret (opt)

2- Retrieval of OP address

RP

BSF

1- User supplied identifier

AA

BA

NAF/OP

17- Generate NonceAA and session ID

20- Authenticate BA

9- Map BA to AA

6- HTTP(S) response with AA identifier request (opt)

7- HTTP(S) GET request with AA identifier (opt)

_1334128880.doc

Continue OpenID with RP

After OpenID set-up:

Copy NonceAA and password over local link

Mapping of BA and AA

HTTP(S) GBA challenge Response

with B-TID

HTTP(S) request with Authorization header

HTTP(S) response with NonceNAF

HTTP(S) request start GBA authentication

HTTP(S) Unauthorized Response

Initial HTTP(S) request following OpenID redirect

AA

BA

NAF/OP

HTTP(S) redirect to OpenID success or failure address

HTTP(S) GBA challenge

Generate NonceAA and password

GBA trigger over local link

_1334091213.doc

10-Session ID mapping

9a – Push message for AA to initíate GBA authentication (includes session ID)

18-Check of assertion

9b-Setting up secure tunnel and AA receives Session ID via local link

17-Redirect to RP with authentication assertion

15- NAF retrieves keys and related informatione.g lifetime,GUSS,etc OP/NAF authenticates the user.

14-HTTP(S) request carrying B-TID

13- Optional bootstrapping

12-401 unauthorized+ GBA challenge

11-HTTP GET + Session ID (Initiate GBA authentication)

8- HTTP(S) response with Session ID

5- HTTP(S) GET request

4- redirect ME browser to OP with OpenId authentication request

3- Setup of shared

Secret (opt)

2-Retrieval of OP address

RP

BSF

1- User supplied identifier

AA

BA

NAF/OP

6- HTTP(S) response with AA identifier request

7- HTTP(S) GET request with AA identifier

8- OP maps BA to AA

16- HTTP(S) GET request

_1334128767.doc

Continue OpenID with RP

After OpenID set-up:

User copies NonceAA and password

HTTP(S) redirect to OpenID success or failure address

 HTTP(S) request with Authorization header

GBA push challenge + NonceNAF

HTTP(S) Unauthorized Response

Initial HTTP(S) request following OpenID redirect

AA

BA

NAF/OP

Generate NonceAA and password

Mapping of BA and AA

_1334090880.doc

16-Check of assertion

12- GPI processing

Derive NAF key(s)

15-Redirect to RP with authentication assertion

9- NAF retrieves keys and related information e.g lifetime,GUSS,etc OP/NAF authenticates the user.

11- User visually maps AA and BA sessions

13-HTTP GET with P-TID + proof of challenge processing

10-Push message for AA. Includes GBA push GPI, session ID, and NAF/OP contact address.

8-HTTP Response with Session ID

8- OP maps BA to AA

5- HTTP(S) GET request

4- redirect ME browser to OP with OpenId authentication request

3- Setup of shared

Secret(opt)

2-Retrieval of OP address

RP

BSF

1- User supplied identifier

AA

BA

NAF/OP

7- HTTP(S) GET request with AA identifier

6- HTTP(S) response with AA identifier request

14- HTTP(S) GET request

_1334088300.doc

Continue OpenID with RP

After OpenID set-up:

Mapping of BA / AA Sessions by the user

HTTP redirect to OpenID success or failure address

 HTTP Request Challenge as proof of processing

Session ID+GBA push challenge

HTTP Response Session ID

Initial HTTP request following OpenID redirect

AA

BA

NAF/OP

 HTTP Request Challenge

HTTP Response requesting AA Id

HTTP Request containg AA Id

_1334089511.doc

Continue OpenID with RP

After OpenID set-up:

Mapping of BA / AA Sessions by the user

Mapping of

BA and AA

HTTP(S) GBA challenge Response Containing B-TID

HTTP redirect to OpenID success or failure address

GBA challenge

HTTP request start GBA authentication

Push messsage with

SessionID + trigger event to start GBA session

HTTP Response Session ID

Initial HTTP request following OpenID redirect

AA

BA

NAF/OP

HTTP Response requesting AA Id

HTTP Request containing AA Id

HTTP Request

_1325878755.doc
		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

8. HTTPS Request containing B-TID

11. RP validates assertion

2. Retrieval of OP address

 10. Redirect ME browser to RP together with authentication assertion

 9. NAF retrieves keys and related information e.g. lifetime, GUSS, etc. OP/NAF authenticates the user

 7. Bootstrapping run according to [2]

6. ME authenticate request

OP/NAF

5. HTTPS GET

Request

4. Redirect ME browser to OP with OpenID Authentication Request.

3 Establishment of shared secret (opt)

1. User-Supplied-Identifier

BSF

 RP

 UE

