Page 1

3GPP TSG-SA3 (Security)
S3- S3-100007
SA3#58, 1-5 Feb 2010, Xian, China
revision of S3-09xyzw

Source:
Motorola
Title:
Super CR for backhaul security enhancement
Document for:
Discussion and approval
Agenda Item:
6.2.1
Work Item / Release:
NDS_Backhaul / Rel-9
1 Introduction
This contribution presents a super CR resulted by email discussion on backhaul security enhancement.
**
3GPP TSG-SA3 (Security)
S3-09XXXX
SA3#adhoc, 16-20 November 2009, Dublin, Ireland
revision of S3-09xyzw
	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	33.310
	CR
	00XX
	(

rev
	-
	(

Current version:
	9.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	NDS enhancement to support backhaul security

	
	

	Source to WG:
(

	SA3

	Source to TSG:
(

	SA

	
	

	Work item code:
(

	Backhaul security
	
	Date: (

	18/09/2009

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	NDS mechanisms shall be enhanced to support backhaul security.

	
	

	Summary of change:
(

	Adding section 9 “NDS enhancement to support backhaul security”

	
	

	Consequences if
(

not approved:
	NDS mechanisms can not support backhaul security.

	
	

	Clauses affected:
(

	

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

*****************First changes******************************
9.6 CMPv2 Profiling
9.6.1 CMPv2 Profile Overview for End-to-End Base Station Certificate Enrollment

The CMPv2 profile for end-to-end base station certificate enrolment shall include the following CMPv2 messages:

· Certificate Request (CR)

· Certification Response (CP)

· Key Update Request (KUR)

· Key Update Response (KUP)

· Confirmation (PKICONF)

· Certificate Confirm (CERTCONF)

Editor’s Note: It is uncertain at this time if a PKCS#10 certificate request CMPv2 message will also be utilized. If proxy-assisted CMPv2 requests will be allowed as an option, then this type of request will be generated by a proxy and will include a PKCS#10 request generated at the base station.
The certificate enrolment sequence diagram is provided below:

[image: image1.emf]eNBRA/CA

4. cr (Certificate Request)

11. certConf (Certificate Confirm)

5. authenticate cr

6. generate IPSec certificate

9. authenticate cp

10. sign certConf

12. authenticate certConf

13. sign PKIconf

15. authenticate(PKIConf)

8. cp (Certificate Response)

14. PKIConf (PKI Confirm)

7. sign cp

2. generate Private and Public Key pair

3. sign cr

1. discover its own FQDN or IP address and the RA/CA address

 Figure <XXX>: CMPv2 Profile for NDS certificate enrollment

1. The base station discovers its own FQDN or IP address and the RA/CA address.

2. The base station generates the private and public key pair. (Base station may optionally reuse the pre-provisioned private and public key pair for certificate request.)

3. The base station generates the first CMPv2 message called certification request message (cr: PKIBody type 2) towards the RA/ CA. The request includes the IP address or FQDN. The certification request message contains as the PKIBody a CertReqMessages data structure, which specifies the requested certificates. The base station signs the cr using the pre-provisioned private key, and includes both the digital signature and the pre-provisioned certificate(s) in the CMPv2 PKIMessage.

In the case of certificate renewals or re-keying of a base station, it will generate a key update request (kur) which has exactly the same format as cr.

4. The base station sends the signed cr or kur to the RA/CA as CMPv2 PKIMessage.

5. RA/CA verifies digital signature on the cr from base station using the provided base station certificate(s) and any additional certificates leading to a trusted CA. RA/CA also verifies the proof of the possession of the private key for the requested certificate. The proof of possession shall be of type POPOSigningKey.
6. RA/CA generates the certificate for base station.

7. RA/CA generates a certificate response (cp or Kup) which includes the issued certificate and the CA certificate(s), signs the cp with the RA/CA private key, and includes the signature and RA/CA certificate(s) in the PKIMessage. The cp includes the appropriate certificate chains for authenticating the RA/CA certificates in the PKIMessage body.
In the case where the base station sent a kur, the message returned by the RA/CA will be the key update response (kup) identical in format to cp.
8. RA/CA sends the signed cp or kup to base station as CMPv2 PKIMessage.

9. Base station authenticates the PKIMessage using the RA/CA root certificate and installs the certificate(s).

10. Base station creates and signs the certConf message as defined in RFC 4210.

11. Base station sends the CMPv2 PKIMessage that includes the signed certConf to RA/CA. CMPv2 in RFC 4210 article 4.2.2.2 specifies that when RA/CA fails to verify the certConf, the RA/CA MUST revoke the newly issued certificate if it has been published or otherwise made available.

12. RA/CA authenticates the PKI Message that includes the certConf according to the CMPv2. RA/CA creates and signs a PKIconf message according to CMPv2. Although CMPv2 specifies that PKIconf is optional, it is required in this profile; base station may not know if RA/CA revoked the base station’s certificate because it didn’t receive the certConf due to the network failure.

13. RA/CA sends the signed CMPv2 PKIMessage to base station that includes the PKIconf.

14. Base station authenticates the PKIconf message according to CMPv2.
9.6.2 CMPv2 Profile for NDS with Detailed Message Syntax
Figure <XXX> shows the CMPv2 based certificate enrollment messaging to take place between base station and RA/CA. The details of each of the CMP message fields above are provided in RFC 4210. Each CMP message is a DER-encoded ASN.1 object that shall comply with RFC 4210 and is defined as follows:
 PKIMessage ::= SEQUENCE {

 header PKIHeader,

 body PKIBody,

 protection [0] PKIProtection OPTIONAL,

 extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate

 OPTIONAL

 }

 PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage
 PKIProtection ::= BIT STRING
The optional field “protection” is required by this profile and shall contain the value of a PKCS#1 v1.5 signature which is calculated over the DER encoding of the following ASN.1 object:
 ProtectedPart ::= SEQUENCE {

 header PKIHeader,

 body PKIBody

 }
“ProtectedPart” is not an explicit part of the CMP message. In order to verify a signature, the recipient shall extract the header and body elements of the message, use them to build the DER-encoded ProtectedPart object and then verify the signature over ProtectedPart.
The optional field “extraCerts” is also reuired by this profile and shall contains the full certificate chain of the Certificate Authority. The first certificate extraCerts[0] shall be a self-signed root CA certificate. Certificate extraCerts[1] is the next certificate down in the hierarchy and may be a Subordindate CA certificate signed by the root CA. The final certificate in the sequence contains the public key used to validate the signature on the CMP message.
The actual CMP message that gets sent out is defined by RFC 4210 as a sequence of PKIMessage. For this profile, the size of this sequence shall be 1 in all cases.
9.6.2.1 ExtraCerts CMP Message Field
In the response message containing an issued base station certificate, the last certificate in the extraCerts field is not the CA certificate used to verify base station certificates. This is because re-using the same private key for two unrelated purposes (signing certificates as well as messages) is considered to be bad PKI practice. Instead, the last certificate in extraCerts is used specifically for verifying CMP message signatures. This is illustrated below:

[image: image2]
Based on the above, the CMP request message signed by the base station shall consist of the following certificates in this exact order:
· Manufacturer Sub-CA

· Base Station manufacturer certificate

The Manufacturer Root CA shall be pre-provisioned into the RA/CA.

The CMP reply message signed by the RA/CA shall consist of the following certificates in this exact order:

· Operator Root CA

· NE CA
· CMP Responder Certificate

The Operator Root CA shall be verified using one of these two methods:

1. It is cross-signed by the Manufacturer Sub-CA and provided to the operator. The cross-signed operator root certificate is added to the CMP response message.

2. It is pre-configured into the base station before the CMP message exchange takes place. The CMP in this case checks verifies that the contents of the pre-provisioned operator root certificate are byte-for-byte identical to the one appearing in the CMp message.

9.6.2.2 Header CMP Message Field

The header field is defined as follows for every CMP message:
 PKIHeader ::= SEQUENCE {

 pvno INTEGER { cmp1999(1), cmp2000(2) },

 sender GeneralName,

 recipient GeneralName,

 protectionAlg [1] AlgorithmIdentifier OPTIONAL,
 transactionID [4] OCTET STRING OPTIONAL,

 senderNonce [5] OCTET STRING OPTIONAL,

 recipNonce [6] OCTET STRING OPTIONAL
 }

Some of the CMP message fields are optional and are not supported in this profile. The optional non-supported fields are are not shown in the message definition above and consist of: messageTime, senderKID, recipKID, freeText and generalInfo. The optional fields that are listed above are all required in this profile. Their values shall be determined as follows:
prno: protocol version number – shall be set to 2.
sender: for messages initiated by the base station, this field shall be set to the FQDN or IP address of the base station. For the messages initiated by the RA/CA, this field shall be set to the FQDN or IP address of the RA/CA.
recipient: for messages that are sent to the base station, this field shall be set to the FQDN or IP address of the base station. For the messages sent to the RA/CA, this field shall be set to the FQDN or IP address of the RA/CA.
protectionAlg: this specifies the algorithm used to sign this CMP message. The value shall match the signature algorithm in the signer’s certificate (belonging to the base station or the CA/RA). It is expressed as an OID which may be one of the following:
· RSAwithSHA1
· RSAwithSHA256
Editor note: It is recommended that a sunset date for use of RSAwithSHA1 is specified.

transactionID: the base station shall set this field to a random number that is at least 8 bytes long for the first message in the transaction (which is a certificate request). All subsequent messages in the transaction shall set this field to the same value as in the certificate request.

senderNonce and recipNonce: protect each PKIMessage against a replay attack. As per RFC 4210 recommendations, senderNonce shall be an 128-bit random value generated by the sender while recipNonce shall be copied from the senderNonce of the previous message in the transaction. The recipNonce in the very first message in the transaction shall be 0. A recipient of the second through last message in the transaction shall confirm that the value of recipNonce is equal to the value of senderNonce in the previous message. If the two do not match, the message shall be rejected as a replay and the transaction shall be aborted silently without any further reply.
9.6.2.3 Body CMP Message Field
The body field is defined as follows:
 PKIBody ::= CHOICE {

 cr [2] CertReqMessages, --Certification Req

 cp [3] CertRepMessage --Certification Resp

 p10cr [4] CertificationRequest, --PKCS #10 Cert. Req.

 kur [7] CertReqMessages, --Key Update Request

 kup [8] CertRepMessage, --Key Update Response

 pkiconf [19] PKIConfirmContent, --Confirmation

 certConf [24] CertConfirmContent, --Certificate confirm

 }
There are many more message types defined in RFC 4210 which are out of scope of this profile. Each of the above messages is described in further detail in the following subsections below.
9.6.2.3.1 Certification Request
The certification request is as follows (details can be found in RFC 4211, optional fields that are out of scope of this profile are not listed here):
 CertReqMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

 CertReqMsg ::= SEQUENCE {

 certReq CertRequest,

 popo POPOSigningKey OPTIONAL

 }
 CertRequest ::= SEQUENCE {

 certReqId INTEGER, -- ID for matching request and reply

 certTemplate CertTemplate --Selected fields of cert to be issued

 }
 CertTemplate ::= SEQUENCE {

 subject [5] Name OPTIONAL,

 publicKey [6] SubjectPublicKeyInfo OPTIONAL
 }

 POPOSigningKey ::= SEQUENCE {

poposkInput [0] POPOSigningKeyInput OPTIONAL,

algorithmIdentifier AlgorithmIdentifier,

signature BIT STRING

 }
 POPOSigningKeyInput ::= SEQUENCE {

 sender [0] GeneralName,

 publicKey SubjectPublicKeyInfo
 }

certReqId: shall be always set to transactionID field from the message header.
subject: this is the requested subject name for the operator-issued base station certificate. The CA is not required to copy this exact field into the issued certificate and may omit some of the requested attributes or add additional attributes according to policy. However, it is required that this field contains the CommonName attribute and provides the value which is either an FQDN or an IP address off the target base station.
publicKey: this is the public key that is to be certified. The syntax of this field is according to RFC 5280.
algorithmIdentifier: an OID which specifies the signing algorithm for the proof of possession. It shall be set to the signature algorithm of the factory-installed certificate of the base station.
signature: the signature computed over the DER encoding of POPOSigningKeyInput.
sender: the subject name from the factory-issued base station certificate. Its value is not the same as the value of the subject field in the CertTemplate.
publicKey: this is the public key that is to be certified and the value is identical to the publicKey field in the CertTemplate.
9.6.2.3.2 Certification Response

 CertRepMessage ::= SEQUENCE {

 caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate
 OPTIONAL,

 response SEQUENCE OF CertResponse

 }

CertResponse ::= SEQUENCE {

 certReqId INTEGER,

 status PKIStatusInfo
 }
 PKIStatusInfo ::= SEQUENCE {

 status PKIStatus,

 statusString PKIFreeText OPTIONAL,

 failInfo PKIFailureInfo OPTIONAL

 }
 PKIStatus ::= INTEGER {

 accepted
(0),
 -- you got exactly what you asked for

 grantedWithMods (1),
 -- certificate was issued with some changes in the subject name
 rejection
(2),

 -- request was rejected, the field failInfo and optionally also statusString

 -- include more details about the failure
 }
-- Multiple bits may be set in the following bit string if multiple failures occurred for one request

PKIFailureInfo ::= BIT STRING {

 badAlg (0),

-- unrecognized or unsupported Algorithm Identifier

 badMessageCheck (1), -- integrity check failed (e.g., signature did not verify)

 badRequest (2),
-- transaction not permitted or supported

 badDataFormat (5), -- the data submitted has the wrong format

 wrongAuthority (6), -- the authority indicated in the request as indicated in the recipient

-- header field is different from the one creating the response token

 badPOP (9),

-- the proof-of-possession failed

 certRevoked (10), -- the certificate has already been revoked. For an initial certificate request,
 -- the revoked status applies to the factory-issued certificate. Otherwise,

-- it applies to the status of the operator-issued certificate that is being renewed.
 certConfirmed (11), -- the certificate has already been confirmed – this error code could be in response to

-- a confirmation request.
 wrongIntegrity (12), -- invalid integrity, password based instead of signature

 badRecipientNonce (13),
-- invalid recipient nonce, either missing or wrong value

 badSenderNonce (18),
-- invalid sender nonce, either missing or wrong size

 badCertTemplate (19),

-- invalid cert. template or missing mandatory information

 signerNotTrusted (20), -- signer of the message unknown or not trusted

 unsupportedVersion (22),

 -- the version of the message is not supported

 notAuthorized (23), -- the sender was not authorized to make the preceding

 -- request or perform the preceding action

 systemUnavail (24),

 -- the request cannot be handled due to system unavailability

 systemFailure (25),
 -- the request cannot be handled due to system failure

 duplicateCertReq (26)
 -- certificate cannot be issued because a duplicate

 -- certificate already exists. This failure may occur if a new certificate request

 -- is submitted in place of what should have been a certificate renewal request.

 -- This failure can also occur if a certificate renewal is requested too soon based

 -- on operator policy (e.g., certificate still has 6 months of lifetime remaining but

 -- the policy does not allow renewal requests earlier than 1 month before
 -- expiration.
 }
caPubs: a list of issued certificates. If a certificate was successfully issued, this field shall be present and shall always contain exactly 1 certificate. In the case of a failure, this field shall not be included in the message.

certReqId: shall be always set to transactionID field from the message header.
9.6.2.3.3 PKCS#10 Certification Request

Editor’s Note: It is uncertain at this time if this type of a certificate request will be utilized. If proxy-assisted CMPv2 requests will be allowed as an option, then this type of request will be generated by a proxy and will include a PKCS#10 request generated at the base station. Details will be specified later, once this decision is made.
9.6.2.3.4 Key Update Request
The structure of this message is identical to a Certificate Request. However, there are some additional requirements for generating and processing this message:
· The requesting base station may include its current operator-issued certificate in the extraCerts field. Such a request indicates that the base station is asking the RA/CA to issue a new certificate with exactly the same contents (including public key and subject name) but with a new validity period. Such a request shall be rejected if the current certificate is already expired or has been revoked.
· If the request is signed using a factory-issued certificate, the CA/RA shall locate a previously issued certificate to a base station with the same FQDN or IP address. If such certificate is not found, a new certificate shall not be issued and an error status code wrongIdentity shall be returned instead.
· If the CA/RA does find a previously issued certificate with the same identity and that previous certificate is still valid and non-expired, the CA/RA shall first make sure that the public key requested for the new certificate is different from the one in the previously issued certificate. If the public key did not change, the request shall be rejected by RA/CA with the duplicateCertReq status code. If the public key is different, then the CA/RA shall revoke the old certificate first and then issue and return a new certificate with the new public key.
9.6.2.3.5 Confirmation Request
PKIConfirmContent ::= NULL
9.6.2.3.6 Confirmation Reply
 CertConfirmContent ::= SEQUENCE OF CertStatus

 CertStatus ::= SEQUENCE {

 certHash OCTET STRING,

 certReqId INTEGER,

 statusInfo PKIStatusInfo OPTIONAL

 }
certHash: the hash of the certificate, using the same hash algorithm as is used to create and verify the certificate signature.
certReqId: to match the confirmation with the corresponding req/rep.

statusInfo: could contain an error code if the confirmation message sent to the CA/RA did not verify (e.g., sender and receiver nonces did not match).
*****************End of first changes*************************

CMP

Responder

Cert

Manuf

Sub-CA

Base

Station

Cert

NE CA

Operator

Root CA

Manufacturer

Root CA

Base

Station

Manuf.

Cert

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1314702867.vsd
eNB

RA/CA

4. cr (Certificate Request)

2. generate Private and Public Key pair

11. certConf (Certificate Confirm)

3. sign cr

5. authenticate cr

6. generate IPSec certificate

9. authenticate cp

10. sign certConf

12. authenticate certConf

13. sign PKIconf

15. authenticate(PKIConf)

7. sign cp

8. cp (Certificate Response)

14. PKIConf (PKI Confirm)

1. discover its own FQDN or IP address and the RA/CA address

