Page 1

3GPP TSG-SA3 (Security)
S3-092060
SA3#57, 16-20 Nov 2009, Dublin, Ireland
revision of S3-09xyzw
	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	33.224
	CR
	0001
	(

rev
	1
	(

Current version:
	9.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	X
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Description of GPL_U solution

	
	

	Source to WG:
(

	Gemalto, Giesecke&Devrient, Sagem-Orga

	Source to TSG:
(

	SA3

	
	

	Work item code:
(

	eGBAPush
	
	Date: (

	06/11/09

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-9

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	SA3#56 agreed that GPL should be specified for UICC and ME. The current version of the TS does not describe complete solution for UICC-based GPL solution (GPL_U). Some changes are also needed to optimize the support of GPL_U.

	
	

	Summary of change:
(

	The mechanism to determine where the GPL messages should be processed (ME or UICC) should be NAF-specific only, this would avoid the addition of processing in the ME and definition of a specific GPL interface between the ME and the UICC. The NAF targets the device by selecting appropriate delivery channel. In case of GPL_U, the NAF selects delivery channel targeting UICC, e.g. SMS class 2, BIP.

In this context, the "Key Indication ID" indicator is no longer needed.

The presence of Key Ks_ext_NAF is not mandated since the decryption of GPL message dedicated to the ME could be performed by means of Ks_NAF.

	
	

	Consequences if
(

not approved:
	GPL_U would not be supported.

	
	

	Clauses affected:
(

	3; 4; 5; Annex A

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	CT6 specification

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [2], TS 33.220 [1] and the following apply.
SN_h
The highest received sequence number received in an integrity protected GPL message used for replay protection.

SN_s
A counter used to generate sequence numbers for outgoing messages.

Editor's Note:
Further definitions to be filled in, if needed.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [2] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [2].

GBA
Generic Bootstrapping Architecture

GPI
GBA Push Information

GPL
Generic Push Layer
GPL_ME
GPL hosted in the ME

GPL_U
GPL hosted in the UICC
NAF
Network Application Function

KDF
Key Derivation Function

MAC
Message Authentication Code

SA
Security Association

SAID
Security Association Identifier

SN
Sequence Number

Editor's Note:
The above list is tentative and needs to be enhanced, if needed.
4
GBA Push layer Requirements

4.1
Session concept

It is reasonable to expect that there will exist NAF based services that rely on some form of per device session concept, and which would benefit from pushing more than one message based on the same security association. An example could be a virus-signature update server. It is possible that the virus signatures are delivered in multiple pushed messages (for size limitation reasons of the underlying push transport mechanism), and it would then be inefficient to establish a new security association for each message.
This requires that the generic secure push layer provides replay protection in addition to integrity protection (and possibly confidentiality protection). Figure 4.1-1 depicts the usage scenario, where a secure session with three push messages are delivered from the NAF to the UE after establishing the security association to protect them. Note that steps 1 and 2 in Figure 4.1-1 are out of scope for this specification. One way to achieve steps 1 and 2 is to use TS 33.223 [3].

[image: image2.wmf]

Push message 3

UE

NAF

B

SF

(1) Establishment of Ks

(2) Establishment of Ks_(

int)_NAF

Security

Association with

keys derived from

Ks_

(

int)_NAF

Security

Association

 with

keys derived from

Ks

_(

int)_NAF

Push message 2

Push message 1

Figure 4.1-1: Example of a secure session
If GPL was to provide a complete session concept including reliability of delivered messages using timeouts/acknowledges and re-transmissions, re-establishement of the sessions, re-ordering of messages etc., GPL would be unnecessarily complex and the size of the GPL messages would be too large for many applications (e.g., when the underlying transport is SMS). Therefore GPL shall only provide sufficient session state to ensure that the security of multiple GPL messages are not compromized. GPL shall hence provide the security services confidentiality, integrity protection and replay protection for a GPL session.

If a more complex session concept is required by the application, where the session concept includes services other than security services, then, e.g., WSP [10] could be applied on top of GPL, but this is out of scope for this specification.

Even though it shall be possible to have a secure one-way channel from the push NAF to the terminal (for broadcast only terminals) a return channel may be present. An example of this is OMA's location based services, where a server requests location information from a terminal, which responds with its location information. This request/response exchange may be repeated every ten minutes. It is prudent to require that it shall be possible to secure also such a return channel. The security of the return channel can conveniently be based on the same security association as the one-way channel.
To send a GPL message to the UICC, the NAF selects a delivery channel that targets a UICC (e.g. SMS class 2, BIP). To receive the GPL_U message sent by the NAF, the ME shall support the corresponding delivery channel.

Editor’s note:

 It is FFS that how the NAF knows UE is GPL_U capable or GPL_ME capable, e.g. from GUSS or other meanings.

4.2
Requirements

The following requirements shall be posed for the generic secure push layer:

R1:
It shall perform encapsulation of generic application layer messages from the push NAF to the terminal.

R2:
It shall allow sending multiple messages based on the same security association.
R3:
Integrity protection and confidentiality protection shall be possible to provide for the messages. Integrity protection is mandatory to apply, while confidentiality protection is optional to apply.
R4:
Detection of replayed messages within the same session shall be possible.

R5:
If uplink messages are present in the application protocol, it shall be possible to apply the same level of protection to these messages, based on keys derived from the Ks_(int)_NAF.
R6:
The NAF selects the target of GPL message, UICC or ME, by choosing the type of delivery channel. To send a GPL message to the UICC, the NAF selects a delivery channel that targets a UICC (e.g. SMS class 2, BIP). To receive the GPL_U message sent by the NAF, the ME shall support the corresponding delivery channel.
5
GPL Processing

5.1
Processing Model
GPL is located between the transport mechanism (which could eg. be SMS, IP, IP/UDP) and the application.
In case of UICC-based GPL, the GPL_U module is located within the targeted application (USIM or ISIM application).
When receiving a GPL protected message, the recipient transfers the message to the GPL. How the recipient knows that the message is a GPL message is up to each transport mechanism to define. It could be through, e.g., a special application ID that is tagged onto the message, in which case a GPL application ID needs to be defined.

After GPL processing is complete, the message is delivered to the transport layer again. This time around the GPL application ID and GPL related data is removed from the message, and what remains is a regular application data message (which is routed to the intended application using the transport layers normal dispatching mechanism). The processing model for GPL_ME is depicted in Figure 5.1-1.
In case of UICC-based GPL, the GPL protected message is delivered to the targeted application (USIM or ISIM) that will process the GPL message. The application data remain in the application.

[image: image3]
Figure 5.1-1: The processing model for the generic push layer for GPL_ME agnostic applications. Inbound processing to the right and outbound processing to the left.

Applications in a receiver where GPL is used for protection do not have to be aware of the GPL. In particular, any legacy application can use the GPL for protection without any modifications in the UE. One possibility is that the transport mechanism is configured to protect messages for the application, and in this case the application does not need to be aware of GPL as indicated in the figure. Another possibility is that, for an application which wishes to protect messages, it may be necessary to be aware of the GPL. The reason for this is that the application needs to inform the GPL about which security association to use for the message (i.e., the application calls the GPL module directly, and the GPL module may either pass the GPL encapsulated message to the transport mechanism, or return it to the application).
In case of UICC-based GPL, the GPL_U module is hosted in the targeted application (USIM or ISIM application).
5.2
Session Start

A session is considered started in one peer when a GPL Security Association (SA) is configured. For the NAF, this means that the session shall be considered initiated as soon as it has received the GPI from the BSF and configured the NAF SA (see [3]) and corresponding GPL-SA. For the UE, the session shall be considered started when it has received a GPI and configured its GPL-SA.

In addition to the GPI, the GPL module needs to get GPL policy information for the session, e.g., which encryption and integrity algorithms to use etc. The policy information may be decided by the application itself or by some other management entity.

When a GPI is delivered together with a GPL message (combined delivery), the sender shall choose the policy to use for the downlink messages and it shall be included in the GPL message. The NAF shall in this case choose a cipher suite for downlink GPL messages, life-time for the NAF SA (and hence implicitly for the downlink and possible uplink GPL-SA), SAID for the downlink GPL-SA and SAID for the uplink GPL-SA (if required) etc, and the UE shall (in case an uplink is present) choose the cipher suite for the uplink. It is recommended that the UE chooses the same cipher suite for the uplink as the NAF chose for the down link.
5.3
Session Termination

Sessions are not explicitly terminated, i.e., there is no specific GPL message for closing a session. A GPL-SA life time is kept by each peer and when that time is reached, the GPL-session is over and the NAF-SA, corresponding downlink GPL-SA and corresponding uplink GPL-SA (if it exists) shall be deleted.
5.4
GPL Security Association

A GPL security association (GPL-SA) is the data kept by each peer required for processing of either inbound or outbound GPL messages. That is, in case there is a bi-directional communication link, each peer shall keep two GPL-SAs, one for the inbound traffic, and one for the outbound traffic.
The GPL-SA shall be derived from a NAF SA (see TS 33.223 [3] for further information on NAF SAs). A GPL-SA shall be deleted by the NAF and the UE if the corresponding NAF SA is deleted and vice versa.
Each GPL-SA shall be associated with an identifier, the SAID, which shall be unique for each GPL-SA within the GPL module. This means that the same SAID refers to two different GPL-SAs if one of the GPL-SAs is inbound (at the receiver) and the other is outbound (at the sender).
The GPL-SA contains at least the following items:
SAID: An identity which uniquely identifies the GPL-SA with the GPL-module.
Master key: A 256-bit key used as master key for the key derivations of integrity and encryption keys.
SN_h: The highest received sequence number received in an integrity protected GPL message used for replay protection. This state-variable is only used in an inbound GPL-SA.
SN_s: A counter used to generate sequence numbers for outgoing messages. The counter shall be increased for each message output. This state-variable is only used in an outbound GPL-SA.

Cipher suite: The cipher suite used for protection of messages. A cipher suite shall consist of one integrity protection algorithm, one encryption algorithm, and one key derivation algorithm.

Life-time of the GPL-SA: This is the expiry time of the GPL-SA in the same time format as used for the Ks-life time in GBA. The life-time of the GPL-SA shall be the same as the life-time of the corresponding NAF SA.
5.5
Combined delivery

It is possible to send the GPI message either within the GPL message or separately. When the GPI message is sent within the GPL message this is called combined delivery.
NOTE x:
GBA-Push TS 33.223 [3] allows that GPI message is retransmitted several times including cases when it is sent every time a payload is pushed to the UE. To handle retransmissions efficiently TS 33.223 [3] defines a mechanism how the UE is able to only invoke a UICC application after checking that the GPI does not correspond to an already existing NAF SA.

5.6
Message Format

5.6.1
Data Unit Transfer Format

A GPL message is laid out as shown in Figure 5.5.1-1. The GPL message encapsulates an application message in the GPL payload, and protects the message.

[image: image4.emf]GPL Payload

MAC

Padding

SAID

SAID length

Ver

SN (cont.)

0 1 2 3 4 5 6 7

SN

Cipher suite

Octet 1

Octet 2

Octet 3

Key

Indication ID

Reserved

GPI

Indication

GPI message

GPIlength

GPIlength(cont.)

Figure 5.5.1-1: Format of a GPL message

Each field is encoded in network byte order (i.e., big endian) and with the most significant bit being bit number zero. All fields are octet aligned. The fields of the message are the following.

Ver (4 bits): The version of the GPL protocol encoded as an integer. The version of any message conforming to this specification shall use the value 1, i.e., the first nibble of the message is 0x1.
GPI Indication (1 bits): It indicates if combined delivery is used, i.e. if GPI message is present in the GPL message or not. When GPI Indication equals to 0, fields for GPI length and GPI message are not present. When GPI Indication equals to 1, fields for GPI length and GPI message are present.
Reserved (2 bits): These bits are reserved for future versions of this specification. Implementations conforming to this specification shall set these bits to zero before transmitting a message, and the receiver of the message shall ignore these bits.
GPI length (16 bits): The length of the GPI message in number of octets. This field is present only when GPI Indication is set to 1.
GPI message (variable length): The GPI message. This field is present only when GPI Indication is set to 1.
SN (16 bits): The sequence number used for synchronizing the encryption and providing replay-protection.

Cipher suite (8 bits): The cipher suite used for protection of the message. The cipher suite consists of one integrity protection algorithm, one encryption algorithm, and one key derivation algorithm.

SAID length (8 bits): The length of the SAID in number of octets.

SAID (variable length): The identity of the GPL security association used for protection of the message.

MAC (variable length): The message authentication code providing integrity protection of the message. The length of this field is determined by the size of the output of the integrity protection algorithm used, but shall be a multiple of 8 bits.

GPL Payload (variable length): The actual application message that is protected. The length of the message shall be a multiple of 8 bits, and must be padded by the application unless this condition is met. Any such padding is up to the application and is out of scope for this specification. This field is encrypted.

Padding (variable length): Padding as required by the encryption transform. Exactly how the padding is generated, verified and removed is defined by each encryption transform. In case the encryption transform does not require padding, this field is not present. This field is encrypted.
5.7
Inbound processing

Before processing of any inbound GPL message, the GPL module initiates the GPL-SA. The initialization consists of the following steps:

1. Set the highest received sequence number SN_h equal to zero.

2. Set the master key equal to the master key received from the SA establishment procedure. In case of combined delivery, this step shall be performed after GPI message processing (step 3) below.
When a GPL message arrives at the receiver's GPL module, the following processing steps shall be taken:

1. Verify that the version field in the GPL header is equal to 1. If this is not the case the message shall be discarded and the processing shall stop.

2. Verify that the cipher-suite indicated in the GPL-message is supported. If this is not the case the message shall be discarded and the processing shall stop.

3. In case of GPI indication indicates combined delivery, process the GPI message. Otherwise, go to step 4.

In case of GPL message sent to the ME, the GPL_ME processes the GPI message as defined in TS 33.223 [3]. The GPL_ME checks that the U/M parameter value in NAF GPI request indicates for use of GBA_ME, otherwise the GPI message is discarded.
In case of GPL message sent to the UICC, the GPL_U module checks if the GPI corresponds to an already existing NAF SA. If not, the GPL_U module derives Ks_ext/int_NAF from GPI information and stores the NAF SA associated to Ks_int_NAF. The key Ks_ext_NAF key is not sent outside the UICC.
NOTE:
GBA-Push TS 33.223 [3] allows that GPI message is retransmitted several times including cases when it is sent every time a payload is pushed to the UE. To handle retransmissions efficiently TS 33.223 [3] defines a mechanism how the UE is able to only invoke a UICC application after checking that the GPI does not correspond to an already existing NAF SA.
4. Retrieve the GPL-SA which corresponds to the SAID in the GPL header. If no GPL-SA matching the SAID is found, the message shall be discarded and the processing shall stop.

5. Verify that the sequence number carried in the SN field has not yet been received. One way of accomplishing this is to verify that the sequence number in the SN field is larger than the currently highest received sequence number SN_h. If this is not the case, the message shall be discarded and the processing shall stop. When SN_h is equal to 0xffff, all messages with the given SAID shall be discarded and the processing shall stop. It is not mandatory to implement this particular replay mechanism (which is not robust against message reordering), but the receiver's GPL module shall verify that the sequence number in the SN field has not been received before in a valid message.

6. Compute a MAC using the integrity algorithm indicated by the cipher suite. The MAC is computed over the entire GPL-message, and during the computation, the MAC field shall be treated as containing all zeros. After MAC is computed, it shall be compared to the MAC carried in the MAC field. If the two MACs differ, the message shall be discarded and the processing shall stop.

7. Update the replay protection state. In case the mechanism described in step 3 is used, the state-variable SN_h is set equal to the SN read from the GPL header.

8. Decrypt the message using the decryption transform indicated by the cipher suite field and remove possible padding from the message. The decryption transform is applied to GPL payload and padding fields in the GPL message.
9. In case of GPL_ME, return the payload of the GPL message (i.e., what remains after removing the GPL header and possible padding) to the transport mechanism the message was received from.
In case of GPL_U, the payload of the GPL message remains within the application.
If the processing is stopped by the GPL module before the full processing is complete an error indication may be returned from the GPL module.
5.8
Outbound processing

Before processing of any outbound GPL message, the GPL module initiates the GPL-SA. The initialization consists of the following steps:

1. Set the sequence number counter SN_s equal to one.

2. Set the master key equal to the master key received from the SA establishment procedure.

When an application message arrives at the sender's GPL module, the following processing steps shall be taken:

1. If SN_s is equal to 0xffff, the processing shall stop and an error indication shall be returned from the GPL module.

2. In case of combined delivery, include the GPI message and set the GPI indication bit accordingly.
3. Retrieve the GPL-SA which corresponds to the SAID as indicated by the caller of the GPL module. If no GPL-SA is found, the processing shall stop.
4. Fill in the version number 1 in the Ver field of the GPL header. Fill in the cipher suite value as defined by the GPL-SA in the GPL header. Copy the state-variable SN_s to the SN field of the GPL header. Fill in the SAID field of the GPL header with the SAID of the GPL-SA indicated by the caller of the GPL module. If the GPI indication bit has been set, i.e. in case of combined delivery, the GPL-SA needs to be the one derived from the NAF SA of the corresponding GPI.
5. Encrypt the message using the encryption transform defined by the GPL-SA and if needed add padding to the message. The encryption transform is applied to GPL payload and padding fields in the GPL message.
6. Set the MAC field of the GPL header to zero and compute a MAC over the entire GPL message using the integrity transform defined by the GPL-SA. Copy the resulting MAC to the MAC field of the GPL header.

7. Increase the state-variable SN_s by one.

8. In case of GPL_ME, return the GPL protected message to the caller of the GPL module.

If the processing is stopped by the GPL module before the full processing is complete an error indication may be returned from the GPL module.

5.9
Interworking with GBA Push

5.9.1
Initialization of GPL-SA from a NAF SA

5.9.1.1
General

A NAF SA shall be associated with one downlink GPL-SA and may be associated with an uplink GPL-SA. It is only allowed to initialize one GPL-SA per direction from a NAF SA. The reason for this is that the same key otherwise could be reused with the same sequence number. The NAF SA is defined in TS 33.223 [3]. See that specification for the definitions of the fields of the NAS SA that are assigned to the corresponding fields of the GPL-SA.
5.9.1.2
Initialization of downlink GPL-SA from a NAF SA

The NAF shall initialize the downlink GPL-SA from the corresponding NAF SA before sending the first GPL message to the UE. The NAF shall:

· Set the GPL-SA SAID equal to the NAF SA's DL_SA_Id.

· Set the GPL-SA master key equal to Ks_NAF or Ks_int_NAF according to the NAF SA.

· Set the GPL-SA SN_s equal to 1.

· Set the life-time of the GPL-SA equal to the life-time of the NAF SA.

· Set the cipher suite and key indication ID according to the applications policy.

The UE shall initialize the downlink GPL-SA from the corresponding NAF SA when the NAF SA has been established (e.g., after processing a GPI). The UE shall:
· Set the GPL-SA SAID equal to the NAF SA's DL_SA_Id.

· Set the GPL-SA master key equal to External NAF-key or Ks_int_NAF according to the NAF SA.

· Set the GPL-SA SN_h equal to 0.

· Set the life-time of the GPL-SA equal to the life-time of the NAF SA.

· Set the cipher suite and key indication ID according to the applications policy.
5.9.1.3
Initialization of uplink GPL-SA from a NAF SA

If the application requires an uplink GPL-SA, the NAF shall initialize the uplink GPL-SA from the corresponding NAF SA before processing the first uplink GPL message from the UE. The NAF shall:

· Set the GPL-SA SAID equal to the NAF SA's UL_SA_Id.

· Set the GPL-SA master key equal to External NAF-key or Ks_int_NAF according to the NAF SA.

· Set the GPL-SA SN_h equal to 0.

· Set the life-time of the GPL-SA equal to the life-time of the NAF SA.

· Set the cipher suite and key indication ID according to the applications policy.

The UE shall initialize the uplink GPL-SA from the corresponding NAF SA after the NAF SA has been established (e.g., after processing a GPI) and before sending the first uplink GPL message to the NAF. The UE shall:

· Set the GPL-SA SAID equal to the NAF SA's UL_SA_Id.

· Set the GPL-SA master key equal to External NAF-key or Ks_int_NAF according to the NAF SA.

· Set the GPL-SA SN_s equal to 1.

· Set the life-time of the GPL-SA equal to the life-time of the NAF SA.

· Set the cipher suite and key indication ID according to the applications policy.
5.10
Cipher suites

The following cipher suites are defined for use with GPL:

Cipher suite 1:

ID: 0x01

Encryption algorithm: CTR-AES128 as specified in [8] and [9]. The start value T1 for the counter shall be equal to GPL-IV as defined further down in this clause. The standard incrementing function is used with m=16, according to appendix B in [8], i.e. the 16 least significant bits in T behave like a counter while the 112 most significant bits are static and equal the 112 most significant bits of the GPL-IV.

Integrity protection algorithm: HMAC-SHA256-32 as specified in [5], [6] and [7]. The MAC is hence 32 bits long.
Key derivation function: As specified in TS 33.220 Annex B. The input to the KDF is the 256-bit master key and the string S1 defined by:

· FC = 0x40

· P0 = key-purpose

· L0 = length of the string key-purpose as a 16-bit integer.

· P1 = direction indicator

· L1 = length of direction indicator (i.e., 0x00 0x01)

· P2 = cipher suite ID

· L2 = length of cipher suite ID (i.e., 0x00 0x01)

The FC number space is used controlled by TS 33.220 [1], FC values allocated for this specification are in range of 0x40 – 0x48.
The key-purpose string shall be "gba-push-enc" for encryption keys and "gba-push-int" for integrity keys. The 128 least significant bits of the KDF output are used as key bits.

In case of bi-directional usage of GPL there is a need for two pairs of GPL-SAs, one for each direction. The direction indicator shall be set accordingly for the pair. The direction indicator shall be 0x00 for the GPL-SA protecting messages from the NAF to the UE and 0x01 for messages sent from the UE to the NAF (if such an SA is required by the application).

The initialization vectors for GPL (GPL-IVs) for CTR-AES128 shall be constructed as follows:

SN || 000...0,

where SN is the 16-bit sequence number for the GPL message. The IV is then padded on the right with zeroes so that the resulting string is 128-bits long.

Cipher suite 2:
ID: 0x02

 Cipher suite 2 shall be exactly as cipher suite1 with the only difference that the MAC shall be defined as:
Integrity protection algorithm: HMAC-SHA256-64
Annex A (informative):
Use cases

A.1
Generic Push Layer - use case for terminals without a return channel

This clause describes a use case, how an application could make use of GBA Push.

The goal of the application is to be able to securely push a message from an application server (implemented in a push NAF) to a UE. For example, the push NAF pushes a message to a UE, including the latest virus-signatures. This is a case which can be of interest for terminals without a return channel, e.g., pure broadcast terminals.

This functionality can be separated into two distinct phases: establishment of the security association between the push NAF and the terminal, and the protection of the message. The security association contains keys derived from the Ks_(int)_NAF. The two phases are depicted in Figure A-1, where phase 1 includes steps (1) and (2), and phase 2 includes step (3). The security associations are established between the push NAF and the UE as a result of phase 1.

The establishment of the security association boils down to establishment of the Ks, followed by establishment of the Ks_(int)_NAF. Depending on the Ks model this may be done in one procedure, but this is out of scope for this use case.

When it comes to the protection of the actual message that is to be pushed there are two options, either the push is a one-time occurrence, or the concept of a session can be introduced. A session would here mean that a secure one-way communication channel is established between the push NAF and the terminal. The first phase is out of scope for this specification, which only deals with the second phase.

[image: image6.wmf]

UE

NAF

BSF

(1) Establishm

ent of Ks

(2) Establishment of Ks_(ext/int)_NAF

Security

Association

 with

keys derived from

Ks_(

int)_NAF

Security

Association

 with

keys derived from

Ks_(

int)_NAF

(3) Secure push of application message

based on the SAs above.

Figure A.1-1: The two phases involved in securely pushing a message to a UE from an application server

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

[image: image7.png]Application

——

o

M
B

=

|
| :

! Transport mechanism
|

i

v

GPL Application message

GPL Application message

_1307343239.vsd
GPL Payload

MAC

Padding

SAID

SAID length

Ver

SN (cont.)

0

1

2

3

4

5

6

7

SN

Cipher suite

Octet 1

Octet 2

Octet 3

Key Indication ID

Reserved

GPI Indication

GPI message

GPI length

GPI length (cont.)

_1319220822.doc

Push message 1

Push message 2

Push message 3

Security Association with keys derived from Ks_(int)_NAF

Security Association with keys derived from Ks_(int)_NAF

(2) Establishment of Ks_(int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

_1319224417.doc

Security Association with keys derived from Ks_(int)_NAF

(3) Secure push of application message based on the SAs above.

Security Association with keys derived from Ks_(int)_NAF

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

_1268674157.doc

Push message 1

Push message 2

Push message 3

Security Association with keys derived from Ks(_ext/int)_NAF

Security Association with keys derived from Ks(_ext/int)_NAF

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

_1241447762.doc

Security Association with keys derived from Ks_(ext/int)_NAF

(3) Secure push of application message based on the SAs above.

Security Association with keys derived from Ks_(ext/int)_NAF

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

