1

3GPP TSG SA WG3 Security,

15-20. November 2009, Dublin, Ireland, SA3#57
S3-092053
--

Source:
Nokia Corporation, Nokia Siemens Networks, Gemalto
Title:

Addition of Message Flow and Description for Split terminal case
Agenda item:
TR 33.924 – GBA-IdM
Document for:
Discussion and decision

Introduction and Proposal

In this pseudo CR we propose the following changes:
· .Addition of message flow and description for Split Terminal case
· Removal of editor’s note pointing out that this has to be filled in.

We invite SA3 to study those proposed changes and agree upon them.

Pseudo-CR

4.4.2
Message Flow for Split Terminal GBA Interworking Scenario

This section will outline the split scenario where the GBA agent (authenticating agent) is not located in the same device as the OpenID user Agent (browsing agent). The 3 scenarios will involve an authentication of the Authenticating device and a successful completion will trigger a success status for the OpenID session on the browsing device.
In the first variant the GBA session is initiated asynchronously by the server on the authenticating device via a GBA push message.

In a second variant a GBA session is initiated asynchronously by the server on the authenticating device
In a third variant, the GBA session is initiated by the authenticating device.
In the following a message flow is defined to allow the interworking of the GBA Architecture and the OpenID Architecture as defined in clause 4.3 and focuses on the scenarios where we have an Authenticating Agent (AA) and a Browsing Agent (BA) that do not reside in the same physical entity (the case where both reside in the same entity can be found in 4.2). This message flow will involve asynchronous notification of the authenticating Agent (AA). When registering to the OpenID service using a SplitUE scenario, then the user has to provide an information of how to contact the AA i.e. phone number and operator, this information is mapped to the User-Supplied-Identifier. If no SplitUE scenario is utilized, then this information is not required.

1. The Browser Agent sends a User-Supplied Identifier to the Relying Party.

2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OpenID Provider (OP) and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can secure subsequent messages and the RP can easily verify those messages.
NOTE1:
This association is an optional feature in [8] and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems advisable.

4. The RP redirects the Browsing Agent to the OP with an OpenID Authentication Request as defined in chapter 9 in [8].

Following this redirect operation three scenarios will be now described in parallel. They correspond to three different ways to implement the split terminal function as follows:
Scenario 1 involves the use of a GBA push challenge which is pushed from the OP/NAF to the AA agent. The high level flow of operations for this scenario is described in Figure 4.4.2-1. Note, that the GBA Push challenge is not an HTTP response.
[image: image1.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

Initial HTTP request following OpenID redirect

Session ID

Session ID+GBA push challenge

Challenge proof of processing

HTTP redirect to OpenID success or failure address

Figure 4.4.2-1: Scenario 1: use of GBA push challenge

Scenario 2 involves the use of a push request from the OP/NAF to the AA agent, triggering the AA to initiate a GBA session. The high level flow of operations for this scenario is described in Figure 4.4.2-2
[image: image2.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

Initial HTTP request following OpenID redirect

Session ID

SessionID + trigger event to start GBA session

HTTP request start GBA authentication

GBA challenge

HTTP redirect to OpenID success or failure address

GBA challenge response

Figure 4.4.2-2: Scenario 2: use of push request to trigger GBA session
Scenario 3 involves local communication between the AA and the BA to share a session ID token generated by the OP/NAF. Following the retrieval of this session id token from the BA, the AA will initiate a GBA session with the NAF, providing the session ID token. Once GBA authentication is completed, the BA will be redirected to the OpenID success or failure URL. The high level flow of operations for this scenario for this scenario is described in Figure 4.4.2-3.

NOTE2:
In this scenario, the AA and BA need to be securely connected and authenticated to each other, for example using cable or BT Security.

[image: image3.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

Initial HTTP request following OpenID redirect

Session ID

SessionID (Local link)

HTTP request start GBA authentication+sessionID

GBA challenge

HTTP redirect to OpenID success or failure address

GBA challenge response

Figure 4.4.2-3: Scenario 3: linking of AA and BA sessions via session ID transferred from AA to BA

5. Following this redirection the BA sends a HTTP GET request to the OP/NAF.

6. The NAF generates an authentication session identifier. The NAF sends a session identifier to the BA.
NOTE3:
Depending on the implemented scheme, there might be different ways to pass the session identifier. One approach to send the session identifier is to use the realm attribute in the WWW-Authenticate header (see RFC 2617 [y]). If the NAF intends to populate the field with further information, then the session identifier should be at the end and separated with a ";".Alternatively, the session ID could be carried in the main body of the response for display by the BA.

7. Scenarios 1 and 2: The NAF identifies the AA associated to the BA. This association has been defined previously, possibly at the time where the user has created his OpenID account and enabled usage of GBA (might be part of the registration procedure). The AA is identified by an endpoint address i.e. MSISDN which is itself dependant of the communication scheme used to push the Authentication request.
8. Scenario 1: The NAF/OP initiates a GBA push request to the AA. This push message contains a GPI used to establish a NAF SA. This request contains also the session identifier and the contact address of the OP/NAF Fully Qualified Domain Name (FQDN). Hence, the AA can set up an HTTP Request to the AA.
Scenario 2: The NAF/OP initiates a push request to the AA. This request is just used to notify the AA to initiate a GBA authentication session with the NAF.

Scenario 3: The BA pushes the session ID and the NAF contact address to the AA via the local link.

NOTE4:
The most common approach here is to use SMS for the push message, but also other Push methods might be used like WAP Push, SIP..

NOTE5 : In scenario 2 , the GPI may need to be encapsulated in a higher level protocol enabling to carry the additional information (session Identifier and NAF address)
NOTE6: The session identifier might be alphanumeric or a graphic or picture (or reference to one).

9. Scenario 2 and 3: The AA receives the push message either from the BA or form the NAF. Upon reception of this push message, the AA will initiate an GBA bootstrapping run according to TS33.220 (if no valid shared key is available) and then perform a HTTP based GBA authentication with the OP/NAF according to TS33.222 as outlined in step 10. To that end, the AA sends then an HTTP GET request to the OP/NAF address contained in the push message.

NOTE7: The session identifier is used to make the link between the BA session and the AA session. The way this session identifier is processed varies according to the scenario:
In scenarios 1 and 2, the session identifier may be displayed by both the AA and the BA. The user may visually check that the 2 identifiers displayed match..
In Scenario 3, the Session identifier provided by the OP/NAF to the BA is presented by the AA to the BA. The link between the 2 session can therefore be made at the NAF/OP level without the user being involved in the matching operation.

NOTE8:
The actual methods of linking e.g. PIN, picture comparison is out of scope of this document.

10. Scenarios 2 and 3: The NAF initiates AA authentication by responding with an HTTP response code 401 "Unauthorized" which contains a WWW-Authenticate header carrying a challenge requesting the AA to use Digest authentication with GBA as specified in TS 33.222 [5] with server side certificates. The "realm" attribute starts with the prefix "3GPP-bootstrapping@" or "3GPP-bootstrapping-uicc@".
11. Scenarios 2 and 3: If no valid Ks is available, available to the AA, than the AA bootstraps with the BSF as described in TS 33.220 [2]. If a valid Ks key exists, than the AA computes the NAF specific key Ks_(ext/int)_NAF.

Scenario 1: the Ks is derived as outlined in TS 33.223 [6]. Either way this results in the possession by the UE of a valid Ks. From this the UE can derive the application specific (OpenID specific) Ks_(ext/int)_NAF key(s). The key generation may be protected with a PIN code.

NOTE9:
 In scenario 1 and 2, a PIN code or a manual user action is required to prevent risk of unauthorized background usage of the GBA authentication.
In Scenario 3, the need of setting up a local link between the AA and the BA may result from a manual operation and the use of a manual user operation (PIN or key pressing) may be optional.

NOTE10:
If GBA push is used, than the B-TID is not received from the BSF, but part of the GPI contains the P-TID which is used instead of the B-TID. The P-TID is the GBA Push mirror to the B-TID.
12. Scenarios 2 and 3: The AA generates a HTTP GET request to the NAF/OP. The request carries an authorization header carrying the B-TID received from the BSF and a response to the challenge received in step 9 and computed with the (Ks_(ext/int)_NAF.
Scenario 1: The AA responds to the NAF using the P-TID included in the GPI received from the NAF. The P-TID will point to a specific NAF SA in the NAF.

NOTE11: In scenario 1, the response from the UE serves the purpose to prove to the NAF that the challenge carried by the GPI has been processed successfully. A higher level protocol not defined here is needed to carry this proof of successful processing.
13. Scenario 2 and 3: Using the B-TID, and its NAF-ID, the NAF retrieves the shared key Ks_(ext/int)_NAF and optionally the USS (if GBA_U is used, than the GUSS must be supported) from the BSF using the Zn interface, for details see TS 29.109 [7].
Since the OpenID is HTTP(S) based it is recommended that the NAF/OpenID server support for the interworking scenario the Web Service based Zn reference point as specified in [7] TS 29.109. It may support the Diameter based implementation of the Zn reference point.
Scenario 1: The NAF requests the shared key from the BSF as described in TS 33.223 [6] and TS 29.109.
NOTE12:
It is assumed that the OPs are more likely to support web service based reference points then Diameter based reference points.

The USS may contain authorization information, which the NAF then retrieves. The OP establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored locally or in the USS.

14. The NAF/OP authenticates the user for OpenID using TS 33.222 [5] section 5.3. Then the NAF redirects the browser to the return OpenID address i.e. the OP redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion.

NOTE13:
At this point, the interworking diverges slightly from TS 33.222. In TS 33.222 the NAF responds with a 200 OK message directly to the UE, here the BA does not reside in the UE.
15. The service provider (RP) checks the assertion (i.e. checks if the authentication was approved) possibly using previously defined shared secrets with the OpenId provider or by direct interrogation of the OpenID provider. Then the user is logged in to the service of the RP.

Figure 4.4.2-4 describes the detailed messages flow for scenario 1 involving the use of GBA push messages.
[image: image4.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

1

-

User supplied identifier

BSF

BSF

RP

RP

3

-

Setup of shared

Secret(opt)

4

-

redirect ME browser to OP with OpenId authentication request

5

-

HTTP(S) GET request

6

-

OP maps BA to AA

From its database

6

-

Session ID

7

-

Push message for AA. Includes GBA push GPI, session ID,

And NAF/OP contact address.

8

-

HTTP GET with P

-

TID + proof of challenge processing

9

-

Session ID displayed; User visually

maps AA and BA sessions

13

-

NAF retrieves keys and related informatione.g lifetime,GUSS,etc

OP/NAF authenticates the user.

14

-

Redirect to RP w authentication assertion

6

-

GPI processing

Derive KS

-

int

-

ext

-

NAF key

Figure 4.4.2-4 : Detailed flow of operations for scenario1 (GBA push)
Figure 4.4.2-5 outlines the message flow based on the usage of TS 33.220 [2] for scenario 2

[image: image5.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

1

-

User supplied identifier

BSF

BSF

RP

RP

3

-

Setup of shared

Secret(opt)

4

-

redirect ME browser to OP with OpenId authentication request

5

-

HTTP(S) GET request

6

-

OP maps BA to AA

From its database

6

-

Session ID

7

-

Push message for AA to initiate GBA authentication with NAF

(Includes session ID)

8

-

HTTP GET

9

-

Session ID displayed; User visually

maps AA and BA sessions

10

-

401 unauthorized+ GBA challenge

11

-

Optional bootstrapping

12

-

HTTP(S) request carrying B

-

TID

13

-

NAF retrieves keys and related informatione.g lifetime,GUSS,etc

OP/NAF authenticates the user.

14

-

Redirect to RP w authentication assertion

Figure 4.4.2-5: Detailed flow of operations for scenario 2 (push message to trigger GBA authentication)
Figure 4.4.2-6 outlines the message flow based on the usage of TS 33.220 [2] for scenario 3.

[image: image6.wmf]NAF/OP

NAF/OP

BA

BA

AA

AA

1

-

User supplied identifier

BSF

BSF

RP

RP

3

-

Setup of shared

Secret(opt)

4

-

redirect ME browser to OP with OpenId authentication request

5

-

HTTP(S) GET request

6

-

Session ID

8

-

HTTP GET + Session ID (Initiate GBA authentication)

10

-

401 unauthorized+ GBA challenge

11

-

Optional bootstrapping

12

-

HTTP(S) request carrying B

-

TID

13

-

NAF retrieves keys and related informatione.g lifetime,GUSS,etc

OP/NAF authenticates the user.

14

-

Redirect to RP with authentication assertion

7

-

Session ID via local link

Figure 4.4.2-6: Detailed flow of operations for scenario 3 (local link between AA and BA)

3GPP

