Error! No text of specified style in document.
1
Error! No text of specified style in document.

3GPP TSG SA WG3 Security,

6-10. July 2009, Seattle, USA, SA3#56
S3-091220
--

Source:
Nokia Corporation, Nokia Siemens Networks,
Title:

Architecture
Agenda item:
GBA – OpenID/GBA Interworking

Document for:
Discussion and decision

Introduction and Proposal

This P-CR outlines a rough sketch of GBA and OpenID and refers for details to the corresponding references in the OpenID specifications, respectively GBA specification family.

The intention is to help OpenID ingrators to find the right pointer in the GBA specification family and GBA developers to the right OpenID specification and give both an overview of the other technology.

Also, a longer note is integrated to point out interoperability with older versions of OpenID.
We propose to study and accept this P-CR request.

Pseudo-CR

4.2
Architectural Descriptions
4.2.1
Generic Bootstrapping Architecture
In this section, we give a brief overview of the Generic Bootstrapping Architecture as described in TS 33.220 [2]. GBA enables automatic provisioning of shared keys between a User Equipment (UE) and an application server (Network Application Function (NAF)). The Home Subscriber Server (HSS) contains the long-term subscriber key. The Bootstrapping Server Function (BSF) is a GBA specific network function that resides in the home MNO of the user. It facilitates the use of AKA to bootstrap a new GBA master session key named Ks. The Subscriber Locator Function (SLF) is queried by the BSF in conjunction with the Zh interface operation to get the name of the HSS containing the required subscriber specific data.

[image: image1.emf]

UE

HSS

BSF

Ua Ub

Zh Zn

NAF

SLF

Dz

Figure 4.2.1
Simple Network Architecture for GBA
The basic message flow is as follows (for all details, parameter, formats, key derivation and error cases see [2] TS 33.220 section 4.5.2, which takes also precedence in case of conflict).
1.
The UE sends a bootstrapping HTTP request towards the BSF over Ub reference point.
2.
The BSF determines the IMPI based on the request. If there are several HSS the BSF may consult the SLF to determine the name of the correct HSS for this user.

The BSF retrieves the complete set of GBA user security settings (GUSS) and one Authentication Vector AV over the reference point Zh from the HSS. The BSF might use a local copy of the GUSS (for details see [2]).
The GUSS is optional to support in [2], but if GBA_U is intended to be used by the NAF, then the GUSS must be used.

In the case that no HSS with Zh reference point is deployed, the BSF retrieves the Authentication Vector over the reference point Zh' from either an HLR or an HSS with Zh' reference point support.

3.
Then BSF forwards the RAND and AUTN to the UE in the 401 message. This is to demand the UE to authenticate itself.

4.
The UE checks AUTN to verify that the challenge is from an authorised network; the UE also calculates CK, IK and RES. This will result in session keys IK and CK in UE.

5.
The UE sends another HTTP request, containing the Digest AKA response (calculated using RES), to the BSF.

6.
The BSF authenticates the UE by verifying the Digest AKA response.

7.
The BSF generates the master key material Ks by concatenating CK and IK. The BSF generates also the application specific keys Ks_(ext/int)_NAF. The bootstrapping transaction identifier B-TID value shall be also generated.

8.
The BSF shall send a 200 OK message, including a B-TID, to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks. The key material Ks is generated in UE.
9.
Both the UE and the BSF shall use the Ks to derive the application specific key material Ks_NAF during the procedures as specified in clause 4.5.3 of [2]. Ks_NAF shall be used for securing the reference point Ua, in our case the authentication to the OP. If GBA_U is used, then the Ks_ext_NAF should be used for securing the Ua reference point.
The UE and the BSF shall store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11 in [2]).

GBA is used by many services like MBMS (Multimedia Broadcast Multicast Service), Enhanced MBMS, Access Network Discovery and Service Function (ANDSF), Open Mobile Alliance (OMA) XML Document Management, Presence Security etc. GBA can use USIM with GBA_U aware UICC application, ISIM or SIM cards. GBA and OpenID are independent of each other and the message flow above is given to introduce how GBA works and to ease the understanding for the interworking.
4.2.2
OpenID Architecture
The OpenID protocol [9] is specified by the OpenID Foundation [12]. It utilizes URL based Identifier.

[image: image2.emf]

UE

OpenID

Provider

OP

HTTP / S

HTTP / S

HTTP-based

Diffie-Hellmann

Key Exchange

(optional)

Relying

Party

RP

Figure 4.2.2
Simple OpenID Network Architecture
OpenID is HTTP POST and REPLY based. The basic message flow is as follows (for details and message parameters see OpenID Authentication 2.0 [8], which also takes precedence in case of conflict):
1. The browser in the ME sends a User-Supplied Identifier to the Relying Party.
2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [8]. The RP retrieves the address of the OP and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.

3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can sign subsequent messages and the RP can easily verify those messages.
NOTE1:
This association is an optional feature in [8] and not required for interworking purposes.

4. The RP redirects the ME’s browser to the OP with an OpenID Authentication Request as defined in [8].
5. The OP establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so.
NOTE2:
[8] does not specify the manner and protocol used for authentication. In clause 4.4 we will outline how GBA based authentication using TS 33.222 [5] fits in here.
6. The OP redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed.

7. The RP verifies the information received from the OP. The user is now authenticated.
OpenID is supported by many Internet Service Providers [13] and users can actively request that OpenID Foundation contacts service providers so that the SP supports OpenID in the future.
NOTE3:
This Technical Report describes the interworking with OpenID version 2.0. If OpenID Authentication version 1.0 is used, then it should be noted that this was a quite informal document that contained many unclear section and was quickly replaced by OpenID Authentication version 1.1. OpenID version 1.1 made it clearer what was mandatory and what was optional to support. OpenID Authentication version 2.0 was a larger step forward. It allows usage of XRI to discover the OP, which was not possible in OpenID Authentication version 1.1. It has been reported that some OpenID Authentication version 1.1 implementations support XRIs. OpenID Authentication version 2.0 [8] mandates the usage of the opened.ns field in the HTTP requests. If the value is absent or set to "http://openid.net/signon/1.1" or "http://openid.net/signon/1.0" instead of "http://specs.openid.net/auth/2.0", then the message should be interpreted using OpenID Authentication 1.1 Compatibility mode.

3GPP

_1188127223.doc

Dz

SLF

NAF

Zn

Zh

Ub

Ua

BSF

HSS

UE

_1307344501.doc

Relying

Party

RP

HTTP-based

Diffie-Hellmann

Key Exchange

(optional)

HTTP / S

HTTP / S

OpenID

Provider

OP

UE

