Page 1

3GPP TSG-SA WG3 Meeting #54
(S3-090235
Florence, Italy, 19-23 January 2009

	CR-Form-v9.4

	CHANGE REQUEST

	

	(
	33.401
	CR
	235
	(
rev
	-
	(
Current version:
	8.2.1
	(

	

	For HELP on using this form look at the pop-up text over the (symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(
	UICC apps(
	
	ME
	X
	Radio Access Network
	x
	Core Network
	x

	

	Title:
(
	Initial Counter value of 1 will allow RFC3686 compliant h/w to be used to implement 128-EEA2

	
	

	Source to WG:
(
	Motorola

	Source to TSG:
(
	SA3

	
	

	Work item code:
(
	SAES
	
	Date: (
	16/01/2009

	
	
	
	
	

	Category:
(
	F
	
	Release: (
	Rel-8

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)

	
	

	Reason for change:
(
	128-EEA2 is AES-CTR-128 algorithm. Standards track RFC 3686 "Using AES-CTR with IPSec ESP" (issued Jan 2004) has been implemented in hardware by numerous vendors to provide IPSec functionality. The 128-EEA2 algorithm, as it is defined currently in Appendix B 1.3, will not allow implementors to easily leverage this IPSec hardware acceleration. However, by making a very minor change (0 to 1) to B 1.3 --- which doesn't in any way compromise or weaken the ciphering protection --- existing RFC 3686 compliant hardware can be used, without change, to implement 128-EEA2.

	
	

	Summary of change:
(
	In 128-EEA2, the counter value starts from 0 and is incremented modulo 264. In RFC 3686, the counter value starts from 1 and is incremented modulo 232. The proposed change is to stipulate that the counter starts from 1 instead of 0, so that it is in sync with RFC. This will allow vendors to employ existing hardware accelerated RFC 3686 implementations to compute 128-EEA2 as follows:
1. COUNT[0] .. COUNT[31] (constructed from sequence #, overflow counter and padding) is mapped to the nonce (using RFC 3686 terminology for nonce) .

2. The 64 bits comprising 5 bit bearer, 1 bit direction, 26 zero bits, 32 zero bits map to the per-packet value (RFC 3686 refers to per-packet value as IV)

3. The least significant 32 bits are used as the counter, where the counter starts from 1

Note that it doesn't matter that 128-EEA2 uses a 64 bit counter whereas RFC 3686 uses a 32 bit counter: As long as the counter starts from a small value --- say 0 or 1 ---, the ciphering results will diverge only if the length of a NAS pay load exceeds 68 billion bytes (232 * 16).

	
	

	Consequences if
(
not approved:
	The consequences depend on how easy it is for the vendor to make changes to the RFC 3686 compliant hardware to support 128-EEA2. If this cannot be done easily, then the vendor may have to resort to using FPGA to implement the functionality. This will increase the cost and lengthen time to market. Implementing 128-EEA2 in software is not an option. Even if the change to the hardware/firmware can be made, it will cost time and money. Furthermore, the same hardware cannot be used for both IPSec ESP (say to process the S1 PDU) and for NAS AES ciphering (128-EEA2) unless the vendor adds an option to choose between the two.

	
	

	Clauses affected:
(
	B.1.3

	
	

	
	Y
	N
	
	

	Other specs
(
	
	N
	 Other core specifications
(
	

	affected:
	
	N
	 Test specifications
	

	
	
	N
	 O&M Specifications
	

	
	

	Other comments:
(
	

	1st Modified Section

. B.1.3
128-EEA2

128-EEA2 is based on 128-bit AES [15] in CTR mode [16]

The sequence of 128-bit counter blocks needed for CTR mode T1, T2, …, Ti, … shall be constructed as follows:

The most significant 64 bits of T1 consist of COUNT[0] .. COUNT[31] │ BEARER[0] .. BEARER[4] │ DIRECTION │ 026 (i.e. 26 zero bits). These are written from most significant on the left to least significant on the right, so for example COUNT[0] is the most significant bit of T1.

The least significant 64 bits of T1 are 063 | 1, (where 063 is 63 zero bits)

Subsequent counter blocks are then obtained by applying the standard integer incrementing function (according to Appendix B1 in [16]) mod 264 to the least significant 64 bits of the previous counter block.

	End of modifications

