SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — S3#50
S3-080198
25 - 29 February 2008

Sanya, China

Source:
Nokia Corporation, Nokia Siemens Networks

Title:
Comments to S3-080061 on GBA_U PUSH procedures

Document for:
Discussion and approval

Agenda Item:

Work Item / Release:
Rel-8

1. Introduction

This document proposes GBA_U PUSH procedures.

2. GBA_U procedures

The GBA_U PUSH procedures should perform following tasks:

· Derivation of the bootstrap key Ks dedicated to GBA PUSH: key called “Ks_push”

The disposable Ks_model was agreed during SA3#49 meeting. Consequently Ks_push shall be used only once to derive Ks_ext/int_NAF keys dedicated to GBA PUSH.

Ks_push shall be stored in the UICC (USIM/ISIM) as key different than GBA Bootstrap key Ks.

· Derivation of Ks_ext/int_BSF used in case that NAF_ID is protected in confidentiality

Ks_int_BSF is used to decrypt fields of GPI protected in confidentiality in case that the network indicates in the field “selection info” that the decryption shall take place in the UICC. Confer section 5.2 of TS 33.223 v1.0.0

Ks_int_BSF is kept in the UICC.

· Derivation of Ks_ext/int_NAF to be used for Ua-application-data sent in GBA PUSH messages

Ks_int_BSF is stored in the UICC.

In order to have similar procedures for ME-based GBA PUSH and UICC-based GBA PUSH, we propose the definition of a new security context for AUTHENTICATE command: GBA PUSH security context. This GBA PUSH security context may have three modes: a “Bootstrap” mode to derive the Ks_push bootstrapped key, and a “BSF Derivation” mode to derive Ks_ext/int_BSF used to decrypt NAF_ID protected in confidentiality, and NAF Derivation mode to derive Ks_ext/int_NAF keys used to protect Ua-application data.

· GBA_U PUSH bootstrapping procedure

The aim of this procedure is to compute and store the bootstrapped key Ks_push.

This procedure would require AUTHENTICATE command - GBA PUSH security context with “Bootstrap” mode.

Ks_push is computed in similar way that the bootstrapped key Ks as described in GBA TS 33.220.

This command uses the following parameters:

· Ks_push_usage: this parameter limits the use of the Ks_push, which is set to “0x01”

· Key_type: this parameters indicates the type of the key stored in the UICC for GBA PUSH, this parameter is set to “push_ks” for the key Ks_push.

[image: image1.wmf]

UICC

ME

GBA_U PUSH Bootstrapping

 Procedure

RAND || AUTN || B

-

TID

Successfu/error

-

UICC computes Ks_push

-

UICC stores Ks_push with

Key_type= “push_ks”,

Ks_push_usage= 0x01

and associated parameters:

RAND, B

-

TID

· GBA_U PUSH BSF Derivation procedure

The aim of this procedure is to compute the keys Ks_int/ext_BSF keys used to decrypt fields of GPI protected in confidentiality and check MAC value.

This procedure would require AUTHENTICATE command - GBA PUSH security context with “BSF Derivation” mode.

The ME sends this command to GBA PUSH-capable UICC when the selection information of the GPI indicates that some fields of GPI are sent encrypted.

The UICC derives Ks_ext/int_BSF if the Ua-appli-ID of the NAF_ID, sent as input parameter, indicates that this derivation applies to BSF (Ua-appli-id = GBA_push).

The UICC sends Ks_ext_BSF to the ME and stores Ks_int_BSF with parameter key_type set to “push_bsf”.

[image: image2.wmf]

UICC

ME

GBA_U PUSH BSF Derivation

 Procedure

B

-

TID || NAF_ID || IMPI

Ks_ext_BSF

/

error

-

UICC checks Ua

-

appli

-

id of NAF_ID

If Ua

-

appli

-

id indicates that the NAF name is

BSF (Ua

-

appli

-

id= GBA_push) then

o

UICC checks that B

-

TID corresponds to

B

-

T

ID value associated to the key

Ks_push

o

UICC derives Ks_ext/int_BSF with

Ks_push

o

UICC stores Ks_int_BSF with

key_type=”push_bsf” and associated

parameters NAF_ID and B

-

TID

o

UICC sends Ks_ext_BSF to the ME

Else

UICC sends error

 message

Actually it does not matter which name is used in this type of NAF key derivation (it may be a fixed one also like following text: "BSF key"). I wonder whether a different procedure other than NAF key derivation needs to be used.
· GBA_U PUSH NAF Derivation procedure

The aim of this procedure is to compute GBA PUSH Ks_int/ext_NAF keys

This procedure would require AUTHENTICATE command - GBA PUSH security context with “NAF Derivation” mode.

Some input parameters of the command could be encrypted. The parameter “selection info” indicates whether the UICC should decrypt NAF_ID and key lifetime fields, and verify MAC value.

[image: image3.wmf]

UICC

ME

GBA_U PUSH NAF Derivation

 Procedure

|| B

-

TID || terminal management info|| selection info ||

NAF_ID optionally encrypted|| Key lifetime optionally encrypted || MAC of key lifetime *

|| IMPI ||

Ks_ext_NAF / error

-

UICC checks “selectio

n information” field

If the selection information indicates that GPI

fields are encrypted then

o

UICC checks availability of Ks_int_BSF

with same B

-

TID value

o

UICC decrypts NAF_ID and Key

lifetime

o

UICC checks MAC value

-

UICC decrements the parameter

Ks_push

_usage of the key Ks_push

-

UICC derives Ks_ext/int_NAF with the key

Ks_push

-

UICC stores Ks_int_NAF with

key_type=”push_naf” and associated

parameters NAF_ID and B

-

TID,

-

UICC sends Ks_ext_NAF to the ME

This has similar impacts as MBMS. In case of NAF key derivation for Ks_ext_NAF processing this procedure is not needed.
3. Conclusion

We kindly ask SA3 to review the procedures and approve companion pseudo-CR S3-080052.

4. Comments by Nokia, NSN

After analyzing the procedures utilizing the GBA Push aware UICCs (GBA_P) we feel that the amount of impacts caused to the ME does not warrant such additions and modifications in the ME. There also are no explicit use cases that mandate the introduction and usage of the GBA_P capable UICCs as there are no Rel-8 changes that would require supporting GBA_P capable UICCs. It should be clarified why GBA_P capable UICCs are needed. If SA3 decides that GBA_P capable UICCs are needed then it should be clarified which MEs are required to support GBA Push in general. Nokia's and NSN's preference is that only MEs that are utilizing a service that use GBA Push are required to support GBA Push, not for example all GBA enabled Rel-8 MEs.
If GBA_P capable UICCs are needed only for supporting disposable-Ks model onboard UICC, we feel that this is not necessary as we think that disposable-Ks model on the ME can be supported with GBA_U as well with minor side effects, and no security implications.
See an example sequence flow below which depicts the general flow between entities:

[image: image4.emf]appl1

GBA_U pNAF nNAF BSF

appl2

GBA module

uicc

me

18. New normal bootstrapping as Ks from GBA Push run cannot be used. Involved modules GBA_U, GBA module and BSF

1. NAF request GBI, etc from BSF

2. GBI, etc from BSF

3. GBI, etc sent to ME (appl2)

4. GBI, etc sent to GBA module

5. AUTN*, RAND

7. RES

6. Ks derived

9. Generate Ks_ext_BSF (normal NAF derivation procedure used: NAF_ID = BSF_ID)

10. Ks_int/ext_BSF created

11. Ks_ext_BSF

12. Ks_ext_BSF used decrypt any encrypted parameters (NAF_ID, etc)

8. Write B-TID, key lifetime

13. Generate Ks_int/ext_NAF

14. Ks_ext_NAF

16. Ks_ext_NAF

15. Ks invalidated

17. Request key for NAF_ID

19. Ks_ext_NAF

20. Use Ks_ext_NAF with nNAF

appl1

GBA_U pNAF nNAF BSF

appl2

GBA module

uicc

me

18. New normal bootstrapping as Ks from GBA Push run cannot be used. Involved modules GBA_U, GBA module and BSF

1. NAF request GBI, etc from BSF

2. GBI, etc from BSF

3. GBI, etc sent to ME (appl2)

4. GBI, etc sent to GBA module

5. AUTN*, RAND

7. RES

6. Ks derived

9. Generate Ks_ext_BSF (normal NAF derivation procedure used: NAF_ID = BSF_ID)

10. Ks_int/ext_BSF created

11. Ks_ext_BSF

12. Ks_ext_BSF used decrypt any encrypted parameters (NAF_ID, etc)

8. Write B-TID, key lifetime

13. Generate Ks_int/ext_NAF

14. Ks_ext_NAF

16. Ks_ext_NAF

15. Ks invalidated

17. Request key for NAF_ID

19. Ks_ext_NAF

20. Use Ks_ext_NAF with nNAF

1.
Push NAF (pNAF) requests GPI and other relevant parameters from BSF.

2.
BSF generates GPI for pNAF and sends it along with the keys to the pNAF. The used Ks is invalidated after returning the GPI along with other possible parameters to the pNAF.
3.
pNAF constructs a message for the ME using the keys, and sends the GPI, and message to the ME.

4.
An application (appl2) receives the pushed message from the pNAF. It extracts the GPI and other relevant parameters from the message, and sends them to a GBA module of the ME.

5-8.
The GBA Module communicates with GBA aware USIM (GBA_U) and performs the Bootstrapping procedure as specified in TS 33.220, clause G.1.

9-11.
If necessary, i.e., some parameters have been encrypted with Ks_ext_BSF, the GBA Module communicates to create Ks_ext_NAF. The NAF Derivation procedure is used as specified in TS 33.220, clause G.2. NAF_ID in this consists of BSF address and the specific Ua security protocol identifier.

12.
If necessary, GBA module (that is GBA Push enabled) decrypts any parameters that are encrypted in GPI.

13-14.
GBA Module uses the NAF Derivation procedure towards the UICC to generate Ks_int_NAF and Ks_ext_NAF.
15.
As this was GBA Push procedure, the GBA Module invalidates the generated Ks (that is onboard UICC). This means that any subsequent requests incoming from applications in the ME will cause the ME to do a normal bootstrapping procedure (as depicted in steps 17-20).

16.
Ks_ext_NAF is given to the appl2 so that the application can process the message received in step 3 from pNAF.
17-20.
Normal bootstrapping scenario depicted here as an example. As the Ks was invalidated in step 15 above, the GBA Module will perform normal bootstrapping procedure as specified in TS 33.220.
In principle, the above sequence flow demonstrates that it is possible to mimic the disposable-Ks model in reasonable degree with only GBA aware UICCs (GBA_U). Compared to GBA Push aware UICC (GBA_P), there are only two issues:

-
If there was a Ks (established as specified in TS 33.220) in the UICC before the GBA Push operation was done this would have been overwritten. This is why a new bootstrapping run above (step 18) have to be performed anyway.

-
Only Ks_ext_BSF can be used to encrypt the NAF_ID for example, but what would be the need to use Ks_int_BSF and keep the NAF_ID secret from the ME as well?
The effects are comparable with the race condition between UE-initiated Bootstrapping and GBA push bootstrapping i.e. more AKA runs would be needed under these conditions.

If the GBA_Push messages are anyhow targeted for the ME, then the above flow could be modified to perform ME based bootstrapping to the GBA Push capable module under disposable mode.

In summary, we would like to request SA3 to re-evaluate the need for GBA Push aware UICCs, and also discuss which MEs are required to support GBA Push in general. We feel that GBA Push impacts on the ME (as well as to the UICC) should be minimized (options as well as complexity), especially since we don't have any distinct uses cases available that would warrant the impacts in Rel-8.

3GPP

SA WG3 TD

_1264537321.doc

GBA_U PUSH BSF Derivation Procedure

B-TID || NAF_ID || IMPI

ME

Ks_ext_BSF / error

UICC

UICC checks Ua-appli-id of NAF_ID

If Ua-appli-id indicates that the NAF name is BSF (Ua-appli-id= GBA_push) then

UICC checks that B-TID corresponds to B-TID value associated to the key Ks_push

UICC derives Ks_ext/int_BSF with Ks_push

UICC stores Ks_int_BSF with key_type=”push_bsf” and associated parameters NAF_ID and B-TID

UICC sends Ks_ext_BSF to the ME

Else

UICC sends error message

_1264537352.doc

GBA_U PUSH NAF Derivation Procedure

|| B-TID || terminal management info|| selection info ||

NAF_ID optionally encrypted|| Key lifetime optionally encrypted || MAC of key lifetime * || IMPI ||

ME

Ks_ext_NAF / error

UICC

UICC checks “selection information” field

If the selection information indicates that GPI fields are encrypted then

UICC checks availability of Ks_int_BSF with same B-TID value

UICC decrypts NAF_ID and Key lifetime

UICC checks MAC value

UICC decrements the parameter Ks_push_usage of the key Ks_push

UICC derives Ks_ext/int_NAF with the key Ks_push

UICC stores Ks_int_NAF with key_type=”push_naf” and associated parameters NAF_ID and B-TID,

UICC sends Ks_ext_NAF to the ME

_1264537174.doc

GBA_U PUSH Bootstrapping Procedure

RAND || AUTN || B-TID

ME

Successfu/error

UICC

UICC computes Ks_push

UICC stores Ks_push with Key_type= “push_ks”,

Ks_push_usage= 0x01

and associated parameters: RAND, B-TID

