SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — S3#49
S3-070759

8 - 12 October 2007

Munich, Germany

Source:
Nokia, Nokia Siemens Networks

Title:
GBA Push for Rel-6/7 GBA capable UICCs

Document for:
Decision

Agenda Item:
6.7.5 (GBA push)

Work Item / Release:
Rel-8

1
Introduction

This contribution proposes to make it possible to perform a GBA_ME GBA push to a Rel-8 UE which has inserted a GBA capable Rel-6/7card. In S3-070537, it was proposed to always run a GBA_ME GBA_push. We think that it might be useful to allow also a GBA_U based GBA_push for Pre Rel8 UICCs, but on the other hand for efficiency handling reasons the GBA_ME based push seems to be the preferred default handling.

The most important reason for running a GBA_ME based push is that we want to avoid inefficient bootstrapping flows (also called race condition in some SA3#47 contributions) i.e. a Ks established via TS 33.220 which would be directly replaced by a GBA push Ks or vice versa. These race conditions are explained in section 2 in order to make it clear what is meant. A second reason why GBA_ME based GBA push should be the default handling is that Rel-6/7 cards do not have new UICC applications on board which could use Ks_int_NAF keys (except MBMS). We believe that for such cards performing GBA_ME based bootstrapping can advantageously avoid the race conditions.

On the other hand we recognize that in situations where there is no return channel at all (e.g. OMA BCAST), and if the pNAF does know this, there is no worry at all about race conditions i.e. only TS 33.223 applies. Therefore we propose that both GBA_ME and GBA_U bootstrapping shall be possible for GBA push to Rel-6/7 cards, under control of the pNAF, with the disclaimer that the GBA_ME based GBA push is the best solution from a signalling overhead point of view and should be chosen whenever possible i.e. not excluding MBMS use. The impacts of letting the pNAF choose the push bootstrapping type by an indication on the Zpn interface are low i.e. if the pNAF only needs an ext_NAF key and the UICC is from pre-Rel-8, then GBA_ME bootstrapping should be run.

Section 4 describes the proposed solution which will be applicable for a Pre-Rel 8 card. A pseudo-CR is available in companion contribution S7-070773.

2
Problems with GBA_capable cards and GBA-push

In this section the scenario's which generate a Ks race conditions are described. We believe that these should be avoided in a Rel-8 solution.

Scenario's causing subsequent Bootstrappings

This section analyses two flows based on following assumptions:

1) BSF manages only one Ks entry per IMPI. This is based on the fact that the UE behavior is modeled according to that i.e. the UE only manages one Ks and no mixed usage of GBA_U and GBA_ME for the same user is being performed.

2) Rel6/7 UICC with GBA_U is inserted in a Rel-8 ME. Bootstrapping is based on GBA_U if the card is GBA capable.

Flow-1: Initial state: Ks expiration detected by UE

· UE initiates a request for bootstrapping; B-TID 1 assigned.

· BSF creates B-TID 1 for user IMPI

· Request for push Ks arrives at BSF just after B-TID 1 creation

· BSF overwrites entry for the same IMPI towards B-TID 2

· pNAF-B does not send GPI and Ua-application message yet (deferred delivery)

· UE performs NAF-A request with B-TID1

· BSF does not find B-TID1 and returns an error, requesting the UE to bootstrap again.

Flow-2 (Reversed message order towards BSF from flow 1 with same initial state)

· Request for push Ks arrives at BSF before UE request creation

· BSF creates B-TID 1 for user IMPI

· pNAF does send GPI to UE (but not the Ua-application message), but this will be processed after B-TID 2 creation in UE (GPI got delayed in network).

· UE initiates a request for bootstrapping; B-TID 2 assigned in BSF.

· BSF overwrites entry for the same IMPI towards B-TID 2

· UE receives GPI and bootstraps again with B-TID 1

· UE will try to contact a NAF-A based on B-TID1 which is unknown to the BSF, this will subsequently cause a re-bootstrapping.

3
Countermeasures and conclusions

The particular sequences from section 2 cause an unnecessary re-bootstrapping, but this is self-correcting for UE-initiated GBA via Ua-request. The probability to happen increases with increased used of GBA-Push delivery of GPI. Especially with deferred delivery of GBA Push more problems can be expected.

For push messages (Ua-interface) we need to ensure that the NAF keys are created on GPI arrival otherwise the GBA Push B-TID might have been overwritten already in the UE (In the Rel-6/7 card only the most recent B-TID is managed).

The issue of unknown B-TID via the Zn reference point in the BSF could be solved in several ways: The first two solutions change the Ks handling in the BSF, the third solution avoids the problem without requiring modifications to the Rel-6/7 cards (see section 3).

Solution-A: Current BSF stores per B-TID, not per IMPI (see assumptions in section 2) OR BSF is adapted to manage multiple Ks per IMPI, UICC is not affected (Rel-6/7 card specifications cannot be changed). There seems to be no effects on other flows, except that this might create a requirement that the BSF stores all pNAF bootstrapping during their lifetimes, as otherwise BSF algorithm will overwrite push-Ks as BSF cannot not reliably predict the sequence of arriving pushes (deferred delivery case) in the UE. The more Ks's stored in the BSF, the less likely the problem will occur. Most database systems however allow search by various parameter, so storage per B-TID or IMPI would make no difference to those.

Solution-B: GBA push bootstrapping does not create new B-TID entry in BSF. (disposable behavior in BSF, none in UE). This creates an issue when trying to reuse B-TID2 by the UE towards other NAFs (UE probably does not know the difference between a push created bootstrapping B-TID and UE-initiated created B-TID), at least there is no permanent indication for this on the card, and any indication stored on the ME could not be available after a power down. So this solution seems worse as the previous one, creating even more problems from UE point of view as the UE assumes Ks reusability.

4
Control GBA_type of run for GBA push usage for Pre-Rel-8 cards

From Rel-6 on, the HSS stores the type of 'GBA'-card the user has. This means GBA_U or GBA_ME capable which is indicated on the Zh-reference point towards the BSF. On receiving an indication of a GBA_U capable card, the BSF modifies the AV and RES in order to enforce a GBA_U run towards the UICC.
In the proposed solution to avoid affects on a UE-initiated Ks from a GBA_push run on the UICC stored Ks, we propose to adapt the BSF and the HSS in the following way:

Solution C: The HSS would be adapted to include an indication whether the UICC is GBA-push capable or not. The GBA-push capability of the UICC will consist in the ability to handle a Push Ks that does not affect the UE-initiated Ks (i.e. this could be the disposable or the multiple Ks model
). When the BSF receives such indication the Rel-8 BSF will also use a GBA_U bootstrapping. When the Rel-8 BSF does not receive such indication from the HSS, the BSF could modify the AV and therefore execute an ME based GBA_push in such a way that a second B-TID is created for that user in the BSF if we select a multiple Ks model or in such a way that the entry is forgotten if we select the disposable Ks model.

In addition to that, in order to cope with scenario's where the ME is a broadcast capable ME only, and we have no fear that race conditions affect the ks handling, on the Zpn reference point the pNAF could signal the type of required Ua-application i.e. using Ks_int or Ks_ext and/or the ME capabilities. But the addition of ME capabilities in the decision might be difficult, since the Ua application may be installed after first start-up, also the user may buy a new phone with a different capabilities without the operator database being updated. So this is not a stable input parameter to the decision. The Rel-8 BSF evaluates this request and decides on the basis of a Pre Rel-8 card (indication from the HSS i.e. GUSS) whether the GBA push bootstrapping will be performed on the basis of GBA_ME or GBA_U.

5
Conclusion

In this contribution we presented three solutions for handling Rel-6/7 GBA_U cards (Single Ks in UICC)

Sol A: Handle multiple Ks in BSF (Better performance at the expense of database storage

Sol B: Use disposable behavior in BSF (Bad performance, due to required UE-initiated re-bootstrapping after each bootstrapped push.

Sol-C: Control GBA_ME run for GBA_push usage -> This can completely avoid the effects on a Ks stored within the UICC or based on the exact usecase still allow the use of GBA_U. In this way potential race conditions can be kept under control.

Sol-C (with pCR in contribution S3-070773) is preferred.

Given that there may be security related conditions that force the deletion of the Ks stored at the ME, the Ks model of choice for the GBA_ME bootstrapping is the Disposable Ks model.

� This is a separate discussion outside the scope of this contribution.

3GPP

SA WG3 TD

