SA WG3
Page 1
-

3GPP TSG SA WG3 Security — S3#49
S3-070689
8 - 12 October 2007

Munich, Germany
Source:
Huawei
Title:
Generic secure push layer for GBA push
Document for:
Discussion and Approval
Agenda Item:
6.7.5
Work Item / Release:
GBA push/Rel8

1. Introduction
In SA3#47 meeting, it defines a generic secure push layer in TS33.223. However, it just specifies the rationale, session concept and requirements. There is no suitable protection protocol for the push layer. This contribution proposes to help find a protection protocol for generic secure layer for GBA push and provides two potential solutions.

2. Analysis

It was said that “Letting each application specify its own security mechanism, obviously will lead to duplication of work, specifications and implementations.” in annex B.1 of TS33.223 v0.5.0.It may be the original motivation for the push layer. So how to define this protocol becomes a problem since push service is a special application. Normal protection protocol like TLS is a protocol of transport layer and TLS is the one that UE initiates the protocol proceeding and then UE and network negotiate the security parameters and proceed with the handshake TLS session. But push service is always initiated by network. It seems to be the main obstacle of how to define such a protection protocol for GBA push.
Potential Solutions Analysis
2.1 TLS

2.1.1 Procedure
We can assume that TLS can be used for GBA push layer. However, it may have some changes to meet the push use case requirements.

[image: image1.wmf]

Push message 3

UE

NAF

BSF

(1) Establishment of Ks

(2) Establishment of Ks_(ext/int)_NAF

Push message 2

Push message 1

3.

GBA

-

PUSH

-

INFO

4.

TLS handshake

session

Figure 1 TLS solution
As figure 1 shows, step (1) and (2) is key derivation procedure. Here we don’t care whether this key derivation is normal GBA mode or GBA push mode. In this contribution, we just discuss GBA push mode
. That is, BSF derives Ks_(ext/int)_NAF and sends GBA-PUSH-INFO and Ks_(ext/int)_NAF to NAF. Then NAF sends GBA-PUSH-INFO to UE.
2.1.2 Feasibility analysis

If TLS is used, some concerns may be raised:
- How does UE know when to proceed to TLS handshake?
UE will not know when to proceed to TLS handshake since no network entity will inform it. TLS protocol is initiated by UE and GBA push is initiated by network. If NAF wants to push messages to UE, TLS tunnel has to be established already. There can be a method to solve this problem:
If NAF wants to use TLS protocol, GBA-PUSH-INFO can include a static string like “psk-tls” or some other indication like “001” to indicate to UE that NAF is willing to let following push messages be protected using TLS protocol. Then UE will initiate the protocol session and TLS handshake session will be proceeded between UE and NAF. If NAF wants to push messages to UE, it will use the established TLS tunnel to protect push messages.
- Does UE and NAF always have return channel in transport level in GBA push since TLS protocol requires return channel?
It cannot be sure that all the use cases of GBA push can have return channel. It needs to FFS.
- Time delay and resource waste
Push messages will have time delay for any reasons. UE and NAF have to establish TLS tunnel in transport level and then UE has to wait for the push messages. If messages were lost, UE and NAF will not know in this situation. It is really a resource waste condition.
2.2 SyncML protocol
2.2.1 Use cases and protocol rationale
In annex A.2 of TS33.223, there are several specific use cases for GBA push. For network initiated services and OMA related use cases, it includes Device Management (DM), Download DRM (DLDRM), DRM, Secure User Plane Location (SUPL), and OMA BCAST. Some of these use cases like DM and DS have such characteristic: The authentication can be performed both on application and/or transport level, such as DM and DS:
 “Secure device management requires mutual authentication of the DM client and the DM server as described in [OMA-TS-DM-Security-V1_2-20050729-C]. The authentication can be performed both on application and/or transport level. DM sessions can be network as well as client initiated.” (S3-060043)
If TLS is used, the authentication is performed on the transport level just as the analysis in section 2.1. SyncML protocol is the generic application protocol that OMA (SyncML initiative) defines. It performs the authentication on application level. SyncML can be used for any use cases which need to manage and synchronize networked data with any mobile device and manage and synchronize a mobile device with any networked data.

Figure 2 Two phases of protocol
As figure 2 shows, SyncML protocol includes two phases: setup phase and management phase. The protocol is divided into four packages. Every package can include several messages. The function of every package can be seen in figure 2.
For pkg#0, it is a Notification. The Format of Notification is as Figure 3 shows:

[image: image2.wmf]trigger

-

hdr

trigger

-

body

version

sessionid

ui

-

mode

initiator

future

-

use

length

-

identifier

server

-

identifier

vendor

-

specific

digest

Figure 3 Format of Notification

GBA-PUSH-INFO can be in [trigger-body] value. Session id is for identify this session. A secure id value can be defined to identify security association in GBA-PUSH-INFO. In this way, replay attack can be detected. And [digest] value is MD5 digest authentication for integrity protection of trigger message. [future-use] value in [trigger-hdr] can be the extension for SyncML protocol.
2.2.2 Procedure

If SyncML protocol is used for GBA push, the procedure is as figure 3 showing.

[image: image3]
Figure 4 SyncML protocol for GBA push
The procedure in figure 3 is as follows:

Step 1 and 2 is the establishment of Ks and Ks_(ext/int)_NAF.

Step 3 is pkg#0: Notification. NAF sends pkg#0 including GBA-PUSH-INFO to UE to establish the SA. According to the structure of Notification package, if the initiator of action is the network, [initiator] value should be 1. Session id identifies the session between UE and NAF. Secure id in GBA-PUSH-INFO identifies the security association established.

When UE and NAF decide to resume a previous security association (SA) or duplicate an existing security association (instead of negotiating new security parameters) and NAF is willing to re-establish the connection under the specified session state, the message flow is as follows:

When UE receives pkg#0 notification including the secure id of the session to be resumed, UE checks its session cache for a match. If a match is found, UE will send pkg#1 with the same secure id value to NAF. At this point, NAF will reuse the SA established previously to protect the PUSH-INFO. If a secure id match is not found, UE generates a new secure id, UE and NAF perform a full SyncML protocol. Every time a new session is performed, a fresh session id is created. Replay attack can be detected by using session id and secure id mechanism.
Step 4 is for UE to derive Ks_(ext/int)_NAF using GBA-PUSH-INFO and authenticate NAF.

Step 5: UE sends client credential and device information if needed to NAF for application.

Step 6: NAF receives and checks client credential and if it is correct, it indicates that UE and NAF have successfully established the security association. Then NAF sends PUSH-INFO.

Step 7: NAF pushes PUSH-INFO as pkg#2. NAF will send [final] to UE if this package is over.
Step 8: UE receives PUSH-INFO.
Step 9: UE sends pkg#3 to NAF to indicate pkg#2 is successfully received.

Step 10: NAF sends [final] to indicate this push is over. Or else, NAF initiates next push application.

The setup phase of protocol in step 3, 4 and 5 can be seen as establishment of “security association” for generic secure push layer, [Secure id] in GBA-PUSH-INFO is used to identify the SA established and [session id] is used to identify the session.
2.2.3 Feasibility analysis

SyncML is a protocol which is performed in application level. It can be suitable for GBA push and don’t need to change the protocol itself and can be well embedded in GBA push procedure.
In 33.223, it defines five requirements for generic secure push layer:
“R1:
It shall perform encapsulation of generic application layer messages from the push NAF to the terminal.

R2:
It shall allow sending multiple messages based on the same security association.

R3:
Integrity protection and confidentiality protection shall be possible to provide for the messages. Integrity protection is mandatory to apply, and confidentiality is optional to apply.

R4:
Detection of replayed messages within the same session shall be possible.

R5:
If uplink messages are present in the application protocol, it shall be possible to apply the same level of protection to these based on keys derived from the Ks_(ext/int)_NAF.”
Obviously, SyncML protocol can meet R1 and R2. Notification of Pkg#0 in SyncML protocol can provide [digest] value for integrity protection for GBA-PUSH-INFO. It uses MD5 digest authentication. So SyncML protocol can meet the R3. If we use session id to indicate the session and use secure id to indicate the current SA, this protocol can provide detection of replayed messages and can meet R4. For pkg#1 and pkg#3, they are uplink messages and can be in the same level of protection based on keys derived from the Ks_(ext/int)_NAF.
It needs no change to SyncML protocol itself and GBA-PUSH-INFO needs to include a value of secure id for identifying security association.

From above analysis, we can see that SyncML protocol can meet all the requirements that GBA push layer requires and it is already a protocol which has been applicable in industry. SyncML can help establish SA that secure push layer needs.

3. Conclusion
In annex A.2 of TS33.223 v0.5.0, there are several specific use cases for GBA push. And every use case may have its own characteristics. To define a generic secure push layer for all the use cases seems to be a tough issue.

We kindly suggest SA3 to put the potential protocol solutions into annex of TS33.223 first and compare all the solutions at last to push the specification improving.

For this contribution, we kindly ask SA3 to discuss this issue and agree section 2.2.2. A P-CR is provided for details in S3-070690.

Package 2: server initialization with server credentials, initial management operations or user interaction commands from the server

Setup phase

Package 1: client initialization with client credentials and device information

Package 0: alert from the server

Client

Server

UE

NAF

BSF

1 Establishment of Ks

2 Establishment of Ks_(ext/int)_NAF

3. (pkg#0) Notification:[initiator]:1/0;

session id;

GBA-PUSH-INFO

(secure id, B-TID,NAF-ID, …)

4. Derive Ks_(ext/int)_NAF; Authentication of NAF

5. (pkg#1) Client credentials(B-TID);device information

6. Check client credentials(B-TID)

7. (pkg#2)

PUSH-INFO1

PUSH-INFO2

PUSH-INFO3,Final

8. Get PUSH-INFO.

Configuration

9. (pkg#3) 200OK,Final

10. Final

Package 4: more user interaction and management operations if the session is continued.

Package 3: client response to server management operations

Management phase

Client

Server

� Key derivation of normal GBA mode is for further study.

3GPP

SA WG3 TD

_1251209477.doc

4. TLS handshake session

3. GBA-PUSH-INFO

Push message 1

Push message 2

Push message 3

(2) Establishment of Ks_(ext/int)_NAF

(1) Establishment of Ks

BSF

NAF

UE

