3GPP TSG SA WG3 Security — SA3#42
S3-060075
6.-9. February 2006,

Bangalore, India
Source:

Nokia

Title:

Pseudo-CR to Trust recommendations for open platforms

Generalized Recommendations

Document for:
Decision

Agenda Item:

6.24 (TrustOP)
1.
Background

During the last SA3 meeting is was pointed out that the GBA specific recommendations for open trusted platforms can be extended and generalize. In the context of the European Union IST Project MobiLife, similar trust requirements have been investigated. This contribution outlines some generalized recommendations derived from both sources.

BEGIN CHANGE

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply.

Editor’s note:
It is for further studies, if further special definitions are needed.

GAA Server:
The software component in the terminal responsible for communicating with the SIM/USIM/ISIM application in the UICC, and with the BSF during bootstrapping procedure. The GAA server also functions as a public API towards the GAA clients in the terminal.

GAA Client:
A software component in the terminal that communicates with a NAF in the network. The GAA client uses GAA credentials to authenticate and possibly otherwise secure the communication with the NAF in the network. GAA client uses the API provided by the GAA Server to gain access to the GAA credentials.

GAA Credentials: Consists of a bootstrapping transaction identifier (B-TID), one or two NAF specific keys, and a lifetime of those keys. If the terminal is equipped with GBA_U unaware UICC, then there is only one key that derived by the GAA Server from the GAA master secret and given to the GAA client for further usage with the NAF. If the terminal is equipped with GBA_U aware UICC, then there are two keys that are derived from the GAA master secret in the UICC: one that stays and is used in the UICC, and one that is given to the ME and is used in the ME (similar to the GBA_U unaware key).

GAA Master Secret: GAA master secret Ks [1] is established during the bootstrapping session between the terminal (i.e., GAA Server) and the BSF. The GAA master secret is used as a key to derive further NAF specific keys that can be used between the GAA clients and the NAFs.

Coarse-grained access control policy: In GAA context, the access control policy in the terminal controls whether an application is authorized to have access to NAF specific GAA credentials. Therefore, the application has access to all possible NAF specific GAA credentials.

Fine-grained access control policy: In GAA context, the access control policy in the terminal controls which authorized applications in the terminal have access to certain NAF specific GAA credentials, i.e., only certain application in the terminal is allowed to GAA credentials that can be used with certain NAFs.
Persephone Server: The software component in the terminal responsible for communicating with the SIM/USIM/ISIM application in the UICC, and with external entities for possible key generation processes. The Persephone server also functions as a public API towards the Orpheus Clients in the terminal.
Orpheus Client: A software component in the terminal that communicates with an application in the network. The Orpheus client application specific credentials to perform security functionalities. Orpheus Client uses the API provided by the Persephone Server to gain access to the Application Specific Credentials
Application Specific Credentials: These are credentials e.g. keys, identifiers and related data, that are application specific and need to be protected against malicious access and only to be released to authorized applications acting as a Orpheus client. The application specific credentials might be stored or generated in the UICC or in the Persephone server. The application specific credentails can be generated from a master secret, rendomly or be set by the user.
Master Secret: The Master Secret is a master secret that servers as a basis for later key derivations. The Master Secret is established between the terminal (i.e., Persephone Server) and the network. The master secret is used as a key to derive further application specific credentials that can be used between the Orpheus clients and the application. Not every application derives its credentials from a master secret.
Styx Coarse Grained Access Control: The access control policy in the terminal controls whether an application is authorized to have access to application specific application credentials. Therefore, the application has access to all possible application specific credentials.
Charon Fine Grained Access Control: The access control policy in the terminal controls which authorized applications in the terminal have access to certain application specific application credentials, i.e., only certain application in the terminal is allowed to application specific credentials that can be used with certain applications.
Credential Generator: The credential generator generates the application specific credentials and the master secret. It might also generate directly the application specific credentials without a master secret. The Credential Generator might be part of an application or co-hosted together with an application.
3.2
Abbreviations

Editor’s note:
It is for further studies, if special abbreviations are needed.

For the Generic Authentication Architecture (GAA) specific abbreviations we refer to [1].

4
Recommendations for Trusted Open Platforms in 3GPP Release 7

4.1
Recommendations from the Generic Bootstrapping Architecture

Editor’s note:
Source of the access control policies have to be studied further for the different GBA cases.

BEGIN NEXT CHANGE

4.5 Generalized Recommendations

Editor’s note:
Further details to be filled in.

4.5.1
Study of credential security in open trusted platforms

The inherent feature of open platforms is that new applications can be installed to the terminal. In relation to shared secret credential management, this poses a security threat when a malicious application is installed in a type of terminal that does not protect the shared secret properly. The security threats are as follows:
-
A malicious application can access the UICC directly and therefore can then communicate with both the UICC and a credential generator and hence stablish master secrets and application specific credentials.
-
The malicious application can access the Persephone server private data, and gain access to the master secret.

-
The malicious application can access the Persephone server API, and obtain the application specific credentials by requesting them from the Persephone server.
In all these cases, the malicious application can send either the master secret, or one or more application specific credentials to the network.
NOTE1: If there are only application specific credentials e.g. password storage or just one application using a master secret, then the second threat can be neglected.
The first two threats can be mitigated by restricting access to the UICC, and the Persephone Server private data (see recommendations 1 and 2).

The third threat can be mitigated by restring the access to the Persephone Server API to authorized applications (see recommendation 3). The decision whether an application is authorized is done by the terminal manufacturer, the operator, or the user (see recommendations 4 and 5). This can be called the Styx Coarse Grained Access Control access control method, where an authorized application has access to all possible application specific credentials.

The Styx Coarse Grained Access Control access control method is a basic access control that is enough for applications that have been authorized by the terminal manufacturer, or the operator.

However, if the user grants the authorization to the application, there may be a need for a more granulated access control method. i.e. Charon Fine Grained Access Control. It may be required that the certain application specific credentials are limited only to certain applications and user installed applications, even with credential access authorization, would not have access to them. For example such credentials might give access to operator's application servers. Recommendation 6 addresses this issue.

To be useful, the Charon fine grained access control needs to be configured. First, the manufacturer or the operator may pre-configure the terminal (recommendation 7). Second, the operator may wish to update the configuration (recommendation 8). Finally, the user may add new policies to the configuration (recommendation 9). Note that a policy set by a user will not override a policy set by an operator or a manufacturer. However, the step two implies that an operator can override or modify a policy set by the manufacturer.
These are the recommendations identified to achieve the credential security in the open platform terminals:

	ID
	Recommendations
	Comments

	1
	It is possible for the platform to control access to the UICC.
	Only authorized applications should have access to the UICC. Otherwise malicious application can establish a master secret, having access to application specific credentials or is able to generate application specific credential offline (outside the terminal) .

	2
	It is possible for the platform to restrict the access to master secret of the Persephone server.
	If the master secret is not protected, a malicious application can get access to it, send it out from the terminal, and the attacker can generate all the application specific keys offline (outside the terminal).

	3
	It is possible for the platform to control general access in coarse-grained model to the Persephone server so that an unauthorized application are not be able to get any application specific credentials from the persephone server.
	If a malicious application can gain access to the Persephone server, it can generate all the application specific keys online (in the terminal).

	4
	It is possible that an application is granted access to the persephone server by the manufacturer, or the operator.
	The manufacturer or the operator must make sure that the application that is granted access to the persephone server is not malicious or have security flaws.

	5
	It is possible that an application is granted access to the persephone server by the user provided that such access is not prevented by manufacturer or operator policy. (See the next recommendation)
	User may grant access to a malicious application simply because the application requests to have access.

	6
	In addition to recommendations 3, 4, and 5, it is possible to control the access to certain application specific credentials in more fine-grained level, where access to certain application specific credentials can be restricted to certain applications only.
	This recommendation can protect against malicious applications that try to get access to certain application specific credentials.

	7
	In addition to recommendation 6, the manufacturer or the operator can pre-configure the fine-grained access control policy on the terminal.
	

	8
	In addition to recommendation 6, the operator can update all fine-grained access control policies on the terminal.
	

	9
	In addition to recommendation 6, the user can add new fine-grained access control policies to the terminal.
	The user may only add and modify user's own policies. The user cannot change policies set by the manufacturer or the operator.

Table 1: Recommendations

The recommendations in Table 1 can be divided in to three groups the following way:

-
Group 1: To provide the basic application credential related security in the terminal, recommendations 1 to 4 must be enforced. The basic credential security includes controlling access to UICC and to the master secret, controlling access to the persephone server, and only the manufacturer or the operator can grant access to the credential functionality for the application.

-
Group 2: If access to credential functionality for applications can be granted by the user then the recommendation 5 must be enforced.

-
Group 3: If more fine-grained access to the credential functionality is wanted as described above, then recommendations 6 to 8 must be enforced. Recommendation 9 must be enforced if the user can grant access to credential functionality for an application

NOTE2:
If there is only an application specific secret and no master secret, then the recommendations are not impacted. If there are only a master secret, that is used by several applications, then there can be no fine-grained access control. If some applications utilize a master secret for key derivation and other applications have their own non-master secret based credentials, then the same recommendations apply as outlined above.
If the user is not allowed to grant access to credential functionality for an application, it is enough to enforce the recommendation group 1. In this case, only the manufacturer or the operator can have granted access to credential functionality for an application, and therefore it should be assumed that the application is trusted.

If the user is allowed to grant access to credential functionality for an application, then naturally both recommendation groups 1 and 2 need to be enforced. In this case, the user is allowed to grant access to credential functionality and user may do this for any application that requests this access. It should be assumed that a malicious application might thus gain access to credential functionality in the terminal.

If the user is allowed to grant access to credential functionality for an application, then for added protection, the recommendation group 3 should be enforced as well. This would enable credential functionality to protect certain application specific credentials that have more value -- such as application servers that belong to the operator.

4.5.2
Recommendation

This technical report recommends that only recommendation group 1 in the previous clause is required. As user interaction on security is not desired and may cause breaches in credential terminal security group 2 should be not be required. Recommendation group 3 is not needed as group 2 was excluded.
Acknowledgment

Part of this work has been performed in the framework of the IST project IST-2004-511607 MobiLife, which is partly funded by the European Union. The authors would like to acknowledge the contributions and review of their colleagues from Nokia Corporation, Elisa Corporation, Motorola SAS, Motorola Ltd, DoCoMo Communications Laboratory Europe GmbH, Fraunhofer Gesellschaft zur Förderung der angewandten Forschung, Siemens Mobile Communications, Ericsson AB, OY LM Ericsson AB, Hewlett Packard Italia, University of Surrey, Alcatel CIT, NEC Europe Ltd, University of Helsinki, University of Kassel, Stichting Telematica Instituut, NEOS Engineering SRL, UNIS, Suunto Oy, BellStream SP, Helsinki University of Technology and Telecom Italia.

