CHANGE REQUEST

\% 33.203 CR CRNum \% rev - \% Current version: 5.2.0 \%

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathscr{H} symbols.
Proposed change affects: $\mathscr{H} \quad(\mathrm{U}) \mathrm{SIM} \square$ ME/UE $\mathbf{X} \quad$ Radio Access Network \square Core Network \mathbf{X}

Title:	\mathscr{H} The definition of the key to be used for HMAC-SHA1-96 within ESP			
Source:	\% Ericsson			
Work item code: \& IMS-ASEC			Date: \& July 102002	
Category:	\%	F	Release: \% Rel-5	
		Use one of the following categories: \bar{F} (correction)	Use one of the following releases: 2 (GSM Phase 2)	
		\boldsymbol{A} (corresponds to a correction in an earlier release)	$R 96$	(Release 1996)
		\boldsymbol{B} (addition of feature),	$R 97$	(Release 1997)
		C (functional modification of feature)	$R 98$	(Release 1998)
		D (editorial modification)	$R 99$	(Release 1999)
		Detailed explanations of the above categories can	REL-4	(Release 4)
		be found in 3GPP TR 21.900.	REL-5	(Release 5)

Reason for change: \mathscr{H} There are two reasons for the change:

1) Adopt the recommendation from ETSI SAGE
2) Create conformity with IETF RFC2104

Summary of change: \& Proposes how to expand IK from 128 bit to 160 bit by appending zeros to IK
Consequences if \quad H TS33.203 will not be inline with recommendation from ETSI SAGE. Furthermore not approved:

TS33.203 will not follow the principles as specified in IETF RFC 2104

Clauses affected:	\& Annex I		
Other specs affected:	\mathscr{H}	Other core specifications	
		Test specifications	
		O\&M Specifications	

Other comments: \mathscr{H}

Annex I (normative):
 Key expansion functions for IPsec ESP

If the selected authentication algorithm is HMAC-MD5-96 then $\mathrm{IK}_{\mathrm{ESP}}=\mathrm{IK}_{\mathrm{IM}}$.
If the selected authentication algorithm is HMAC-SHA-1-96 then $\mathrm{IK}_{\mathrm{ESP}}$ is obtained from $\mathrm{IK}_{\mathrm{IM}}$ by appending the 32 most significant bits 32 zero bits of $\mathrm{IK}_{\mathrm{IM}}$-to the end of $\mathrm{IK}_{\mathrm{IM}}$ to create a 160 -bit string.

