3GPP TSG SA WG3 Security — S3#21
S3-010652

27 - 30 November, 2001

Sophia Antipolis, France

Source: Alcatel

Title: Comments on draft-torvinen-http-eap-01.txt

Document for: Discussion

Agenda item:

   INTERNET-DRAFT                                              J. Arkko

   Document: draft-torvinen-http-eap-01.txt                 V. Torvinen

   Expires: May 2002                                           Ericsson

                                                               A. Niemi

                                                                  Nokia

                                                          November 2001

                       HTTP Authentication with EAP

Status of this Memo

   This document is an Internet-Draft and is in full conformance

   with all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF), its areas, and its working groups.  Note that

   other groups may also distribute working documents as Internet-

   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six

   months and may be updated, replaced, or obsoleted by other documents

   at any time.  It is inappropriate to use Internet-Drafts as

   reference material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at

        http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at

        http://www.ietf.org/shadow.html.

Abstract

   This document describes a HTTP authentication scheme using PPP

   Extensible Authentication Protocol (EAP).

   HTTP EAP authentication enables HTTP connections to be authenticated

   using any of the authentication schemes supported through EAP. EAP

   performs the authentication without sending the password in the

   clear text format (which is the biggest weakness of the Basic HTTP

   authentication scheme, for example).

   It is useful for HTTP protocol because it opens up several new

   authentication schemes without additional specification work. The

   same benefits can be reached by any other protocols, which apply

   HTTP authentication, such as Session Initiation Protocol (SIP).

Table of Contents

   1 Introduction.....................................................2

Torvinen et al                                                       

                     HTTP Authentication with EAP        November 2001

   2 HTTP EAP Authentication Scheme...................................2

   2.1 The WWW-Authenticate Response Header...........................4

   2.2 The Authorization Request Header...............................6

   2.3 Authentication-Info Response Header............................6

   3 Security Considerations..........................................7

   4 References.......................................................9

   5 Acknowledgements.................................................9

   6 Author's Addresses..............................................10

Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in

   this document are to be interpreted as described in RFC-2119 [1]

1 Introduction

   The HTTP Authentication framework includes two authentication

   schemes: Basic and Digest [2]. In the Basic scheme, the client

   authenticates itself with a user-ID and a password for each realm.

   The Basic scheme is perceived as insecure since the user credentials

   are transmitted across the public network in a cleartext format. The

   Digest scheme is based on cryptographic hashes and is consequently

   perceived as a more secure authentication scheme than Basic, but is

   limited the use of passwords. See [2] for detailed information about

   the general HTTP authentication protocol.

   The PPP Extensible Authentication Protocol (EAP) is a general

   protocol for PPP authentication [3]. Even though EAP was originally

   developed as a link layer protocol, it can also be applied at the

   application layer. EAP supports multiple authentication mechanism

   (e.g. smart cards, Kerberos, Public Key, One Time Passwords, and

   others) and it can, by definition, be easily extended to support new

   authentication mechanisms [see e.g. 4, 5, 6, 7]. EAP packets are

   defined in a binary format, and their contents depend highly on the

   used authentication scheme.

   HTTP EAP Authentication Scheme supplements HTTP Authentication with

   EAP functionality. This opens up several new authentication schemes

   for HTTP Authentication without additional specification work.

2 HTTP EAP Authentication Scheme

   The HTTP EAP Authentication Scheme delivers base64 encoded EAP

   packets within HTTP Authentication headers (e.g. WWW-Authenticate

   Response headers and Authorization Request headers). EAP packets

   include all relevant information about the required authentication

   scheme, e.g. authentication scheme, packet type (request, response,

   success or failure) and/or challenge. The content of these packets

   is up to the chosen EAP authentication scheme.

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

   The progression of an authentication procedure depends also on the

   chosen authentication mechanism. Typically, the authenticator sends

   an initial Identity Request followed by one or more Requests for

   authentication information. The peer sends a Response packet in

   reply to each Request. As with the Request packet, the Response

   packet contains a type field, which corresponds to the type field of

   the Request. The authenticator ends the authentication phase with a

   Success or Failure packet. See Figure 1.

     User agent                                              Server

         GET

        -------------------------------------------------------->

         401 Unauthorized, WWW-Authenticate: EAP <EAP ID REQ>

        <--------------------------------------------------------

         Authorization: EAP <EAP ID RESP>

        -------------------------------------------------------->

         401 Unauthorized, WWW-Authenticate: EAP <EAP CHALLENGE>

        <--------------------------------------------------------

         Authorization: EAP <EAP RESP>

        -------------------------------------------------------->

         200 OK, Authentication-Info: EAP <EAP SUCCESS>

        <--------------------------------------------------------

              Figure 1. HTTP EAP Authentication message flow

   This message flow above represents only the typical situation.

   Variations of the flow are also possible in the following

   situations:

   - The chosen authentication mechanism requires more than the single

     challenge-response message pair shown. Any number of message

     exchanges are allowed here.

   - Error situations result in terminating the flow from the server's

     side with an error response. This response could be one of 401

     Unauthorized, 403 Forbidden, or 407 Proxy Authentication Required.

     For 401 and 407, the client distinguishes the error situation from

     the continuation of the EAP exchange by the existence of EAP

     FAILURE payload, or the lack of any EAP payload.

   - Error situations from the client's side result in terminating the

     communications with the server.

   - Certain EAP authentication mechanisms such as [7] allow an

     optimized flow where identity request does not need to be sent. In

     these cases, if the client knows it will be demanded EAP

     authentication, it can include an unsolicited EAP ID RESP already

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

     in the GET message. This would enable the server to start the

     actual authentication exchange immediately.

   - EAP authentication was shown to be run towards the server which

     responds with 401 Unauthorized responses. It is also possible to

     run towards a proxy, which responds with 407 Proxy Authentication

     Required responses.

   In this document, we define three new header types for the HTTP
[Alcatel] the above is misleading as these are not new header types (already defined in RFC 2617) but rather new schemes in those existing header types.
   authentication framework. These headers, WWW-Authenticate Response

   Header, Authorization Request Header and Authentication-Info

   Response Header, are needed for making EAP as an independent HTTP

   authentication scheme.

2.1 The WWW-Authenticate Response Header

   The general HTTP authentication framework uses an extensible, case-

   insensitive token to identify the authentication scheme.

   Authentication scheme identifier is followed by a comma-separated

   list of attribute-value pairs, which carry the parameters necessary

   for achieving authentication via that scheme.

        auth-scheme     = token

        auth-param      = token "=" ( token | quoted-string )

   If a server receives a request for an access-protected object

   without an acceptable Authorization header, the server responds with

   a "401 Unauthorized" status code, a WWW-Authenticate header and at

   least one challenge applicable to the requested resource. A Proxy

   acts in the same way but it uses a "407 Proxy Authentication

   Required" status code instead.

        challenge       = auth-scheme 1*SP 1#auth-param

   The authentication parameter realm is defined for all authentication

   schemes:

        realm           = "realm" "=" realm-value

        realm-value     = quoted-string

   The realm value and the canonical root URL of the server being

   accessed define the protection space.

   The realm directive (case-insensitive) is required for all

   authentication schemes that issue a challenge. The realm value

   (case-sensitive) is a string, which may have additional semantics

   specific to the authentication scheme.

   For HTTP EAP Authentication, the framework above is utilized as

   follows:

        challenge       = "Eap" eap-challenge

        eap-challenge   = 1#(realm | eap-param)

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

        realm           = "realm" "=" <"> realm-value <">

        realm-value     = token [ "@" token ]

        eap-param       = "eap-p" "=" <"> eap-packet <">

        eap-packet      = <base64 encoded eap-packet, except

                           not limited to 76 char/line>

   The realm value SHOULD be globally unique. Proxy servers are

   RECOMMENDED to use globally unique realm values in order to be able

   to recognize their set of user credentials in a multi-proxy

   authentication scenario. Implementations MAY use the form "local-

   realm@host".

   The realm value should be considered as an opaque string, which can

   only be compared for equality with other realms on that server. The

   server will service the request only if it can validate the user

   credentials for the protection space of the Request-URI.

   EAP packets have a general structure consisting of four basic

   fields: code, identifier, length and data. The Code field is one

   octet and it identifies the type of the EAP packet. Packet type is

   either a request, response, success, or failure. The Identifier

   field is also one octet and it is used for matching responses with

   corresponding requests. The Length field is two octets and it

   indicates in octects the length of the whole EAP packet including

   code, identifier, length and data fields. The Data field is zero or

   more octets and its format depends on the content of Code field. The

   example below demonstrates the general structure of EAP packets.

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Code      |  Identifier   |            Length             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |    Data ...

      +-+-+-+-+

   All these fields (Code, Identifier, Length, and Data) are included

   in the eap-packet in base64 form. Note that since the packets are

   self-identifying and self-delimiting it is allowed to include

   multiple EAP packets within one eap-packet, should some EAP

   mechanism be able to benefit from this.

   Example below demonstrates how a WWW-Authenticate Response Header

   using EAP authentication would look like:

           WWW-Authenticate: eap realm="BollyWorld@example.com",

           eap-p="QWxh4ZGRpb2jpvcGVuNlctZQ=="

   where "BollyWorld" is the string assigned by the server to identify

   the protection space of the Request-URI at server "example.com".

   A proxy may respond with the same challenge using the Proxy-

   Authenticate header field. Then it is especially important to

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

   maintain global uniqueness for the realm values, since a request may

   have credentials for multiple Proxy-Authenticate challenges.

2.2 The Authorization Request Header

   In the general HTTP authentication framework, a user agent that

   wishes to authenticate itself with an origin server or a proxy MAY

   do so by including an Authorization header or a Proxy-Authorization

   header field to the request. The authorization field value(s)

   consists of credentials containing the authentication information of

   the client for the realm of the resource being requested. The user

   agent MUST apply the strongest authentication scheme it understands

   and request credentials from the user based upon the corresponding

   challenge.

        credentials     = auth-scheme #auth-param

   For HTTP EAP Authentication, the framework above is utilized as

   follows:

        credentials     = "Eap" eap-response

        eap-response    = 1#( realm | eap-param )

        eap-param       = "eap-p" "=" eap-packet

        eap-packet      = <base64 encoded eap-packet, except

                           not limited to 76 char/line>

   The value of the realm field must be that supplied in the WWW-

   Authenticate or Proxy-Authenticate response header for the resource

   being requested.

   Example below demonstrates how the Authorization Request Header

   using EAP authentication would look like:

           Authorization: Eap realm="BollyWorld@example.com",

           eap-p="QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

   Rules for handling potential user identifiers, passwords, challenges

   and so on, are defined in EAP protocol [3].

2.3 Authentication-Info Response Header

   The Authentication-Info header is used by the server to communicate

   information back to the client. This can be either the successful

   authentication in the response, or the continuation of the EAP

   mechanism.

        auth-info       = #auth-param

   For HTTP EAP authentication the framework above is utilized as

   follows:

        Auth-info       = eap-packet

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

        eap-packet      = <base64 encoded eap-packet, except

                           not limited to 76 char/line>

   Example below demonstrates how the Authentication-Info Response

   Header using EAP authentication would look like:

        Authentication-Info: QWxhZGRpbjpvcGVuIHNlc2FtZQ==

   The semantics of Proxy-Authentication-Info follow those of

   Authentication-Info. Proxy-Authentication-Info is used by proxy

   servers in conjunction with the "407 Proxy Authentication Required"

   response, and the consequent client authorization request.

3 Security Considerations

   Very little about the security of HTTP EAP Authentication can be

   stated without knowing the chosen EAP authentication scheme.

   Generally speaking, depending on the chosen EAP authentication

   scheme, HTTP EAP is subject to the same security threats as HTTP

   Authentication. However, there are some general aspects, which

   SHOULD be considered when analyzing the security of HTTP EAP

   Authentication:

     1) Authentication of clients: All EAP mechanisms authenticate the

        client, using a method dependent on the mechanism.

     2) Authentication of servers: Some EAP mechanisms also perform

        mutual authentication.

     3) Using the strongest authentication mechanism available: Servers

        and clients accepting multiple authentication mechanisms should

        be aware of the possibility of 'bidding-down' attacks where a

        man-in-the-middle modifies the authentication offers until the

        peers agree on an easily breakable mechanism. In general, we

        expect HTTP EAP _based  servers to require a predefined

        authentication mechanism from a particular client in any case,

        which avoids this problem. For instance, the user data base at

        a server indicates that user A has a particular public key. The

        server should then insist on using the EAP TLS [4] mechanism to

        authenticate the user.

     4) Confidentiality: Each EAP mechanism offers its specific

        protection schemes for the exchanged credentials. For instance,

        the EAP AKA [7] mechanism sends secure cryptographic hashes

        rather than cleartext passwords like HTTP Basic Authentication

        does, even if both are based on the concept of a shared

        secret. As in EAP in general, HTTP EAP does not protect against

        revealing the identity of the client since the EAP ID RESP

        packets are not encrypted. Confidentiality and integrity of

        the HTTP requests themselves beyond the authentication

        parameters is not within the scope of HTTP EAP, but is

        discussed below under item 7.

     5) Replay protection: Each EAP mechanism offers its specific

        protection schemes for preventing the replay of the

        credentials. For instance, the EAP AKA mechanism uses a

        cryptographically strong sequence number scheme. This is in

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

        contrast to the replay possibilities that exist for the HTTP

        Basic Authentication, and is similar to the use of nonces in

        the HTTP Digest Authentication.

     6) Integrity protection: Again, each EAP mechanism offers its

        specific protection schemes against a man-in-the-middle

        modifying the authentication credentials. Mechanisms based on

        secure hashes prevent any modifications to the authentication

        parameters themselves. Again, integrity of the HTTP requests

        themselves beyond the authentication parameters is a separate

        issue and is discussed below.

     7) Integrity and confidentiality protection of the HTTP request

        itself is also an important issue. Without such protection, it

        is possible for a man-in-the-middle to read and modify the

        actual contents of the request, regardless of any

        authentication that was performed

[Alcatel] As explained below, the message is always first sent in clear until authentication has taken place. Therefore, confidentiality of the HTTP request itself is made rather impossible. A possible solution would be for the client to first submit a request containing minimal information, and only resubmit the (complete) request once authentication has taken place and both integrity and confidentiality keys have been derived from the auth scheme (if applicable in the auth scheme).
   Currently, there are no such authentication schemes in HTTP

   authentication, which would fully protect the integrity of HTTP

   messages. The HTTP Basic Authentication scheme provides no integrity

   protection. HTTP Digest Authentication provides only limited (and

   optional) protection. Most header fields and their values could be

   modified as part of a man-in-the-middle attack. It should also be

   noted that HTTP EAP does not inherently provide the integrity

   protection qualities present in Digest, namely the protection of

   Request-URI and request-method (and possibly the payload).

   Even though HTTP EAP Authentication scheme does not include a

   protection mechanism, it can be used for setting up one. Chosen EAP

   authentication scheme may be used to generate session keys, which

   together with some additional security protocol can provide e.g.

   integrity protection.

   However, such protection should include the protection of original

   HTTP requests as well. This is not trivial because session

   protection keys are generated during the authentication, which takes

   place after submitting the request. In practice, full protection is

   only possible if the request is repeated  at the end of  the

   authentication procedure. This is, however, already the behavior in

   many typical usage situations. For instance, when authenticating a

   SIP REGISTER message, the authentication procedure takes a few

   message rounds, and on each round the REGISTER message is repeated

   until the session keys are available and the procedure is completed.

   The last such message can then use integrity protection. Servers

   that want to avoid man-in-the-middle attacks MUST NOT act on

   requests until both the authentication procedure has completed and

   the messages have been received under integrity protection.

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

4 References

   1  RFC 2119 Bradner, S., "Key words for use in RFCs to Indicate

      Requirement Levels", BCP 14, RFC 2119, March 1997

   2  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach,

      P., Luotonen, A. and Stewart, L. "HTTP Authentication: Basic and

      Digest Access Authentication", RFC 2617, June 1999.

   3  Blunk, L. and Vollbrecht, J. "PPP Extensible Authentication

      Protocol (EAP)" RFC 2284, March 1998.

   4  Aboba, B. and Simon, D. "PPP EAP TLS Authentication Protocol" RFC

      2716, October 1999.

   5  Aboba, B. "EAP GSS Authentication Protocol" Internet Draft,

      draft-aboba-pppext-eapgss-08.txt, October 2001.

   6  Carlson, J. "PPP EAP SRP-SHA1 Authentication Protocol" Internet

      Draft, draft-ietf-pppext-eap-srp-03.txt, July 2001.

   7  Arkko, J. and Haverinen, H. "EAP AKA Authentication" Internet

      Draft, draft-arkko-pppext-eap-aka-00.txt, May 2001.

   1  RFC 2119 Bradner, S., "Key words for use in RFCs to Indicate

      Requirement Levels", BCP 14, RFC 2119, March 1997

   2  Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach,

      P., Luotonen, A. and Stewart, L. “HTTP Authentication: Basic and

      Digest Access Authentication”, RFC 2617, June 1999.

   3  Blunk, L. and Vollbrecht, J. “PPP Extensible Authentication

      Protocol (EAP)” RFC 2284, March 1998.

   4  Aboba, B. and Simon, D. “PPP EAP TLS Authentication Protocol” RFC

      2716, October 1999.

   5  Aboba, B. “EAP GSS Authentication Protocol” Internet Draft,

      draft-aboba-pppext-eapgss-03.txt, February 2001.

   6  Carlson, J. “PPP EAP SRP-SHA1 Authentication Protocol” Internet

      Draft, draft-ietf-pppext-eap-srp-01.txt, May 2001.

   7  Arkko, J. and Haverinen, H. “EAP AKA Authentication” Internet

      Draft, draft-arkko-pppext-eap-aka-00.txt, May 2001.

5 Acknowledgements

   The authors wish to thank Henry Haverinen and Bernard Aboba for

   interesting discussions in this problem space.

Torvinen et al             Expires May 2002                          

                     HTTP Authentication with EAP        November 2001

6 Author's Addresses

   Jari Arkko

      Ericsson

      02420 Jorvas                 Phone:  +358 40 5079256

      Finland                      Email:  jari.arkko@ericsson.com

   Vesa Torvinen

      Ericsson

      02420 Jorvas                 Phone:  +358 40 7230822

      Finland                      Email:  vesa.torvinen@ericsson.com

   Aki Niemi

      Nokia Networks

      P.O. Box 301

      00045 Nokia Group            Phone:  +358 50 3891644

      Finland                      E-mail: aki.niemi@nokia.com

Torvinen et al             Expires May 2002                         10

