
3GPP TSG SA WG3 Security — S3#21 S3-010652

27 - 30 November, 2001

Sophia Antipolis, France

Source: Alcatel

Title: Comments on draft-torvinen-http-eap-01.txt

Document for: Discussion

Agenda item:

 INTERNET-DRAFT J. Arkko

 Document: draft-torvinen-http-eap-01.txt V. Torvinen

 Expires: May 2002 Ericsson

 A. Niemi

 Nokia

 November 2001

 HTTP Authentication with EAP

Status of this Memo

 This document is an Internet-Draft and is in full conformance

 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as Internet-

 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six

 months and may be updated, replaced, or obsoleted by other documents

 at any time. It is inappropriate to use Internet-Drafts as

 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

Abstract

 This document describes a HTTP authentication scheme using PPP

 Extensible Authentication Protocol (EAP).

 HTTP EAP authentication enables HTTP connections to be authenticated

 using any of the authentication schemes supported through EAP. EAP

 performs the authentication without sending the password in the

 clear text format (which is the biggest weakness of the Basic HTTP

 authentication scheme, for example).

 It is useful for HTTP protocol because it opens up several new

 authentication schemes without additional specification work. The

 same benefits can be reached by any other protocols, which apply

 HTTP authentication, such as Session Initiation Protocol (SIP).

Table of Contents

 1 Introduction...2

Torvinen et al

 HTTP Authentication with EAP November 2001

 2 HTTP EAP Authentication Scheme...................................2

 2.1 The WWW-Authenticate Response Header...........................4

 2.2 The Authorization Request Header...............................6

 2.3 Authentication-Info Response Header............................6

 3 Security Considerations..7

 4 References...9

 5 Acknowledgements...9

 6 Author’s Addresses..10

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in

 this document are to be interpreted as described in RFC-2119 [1]

1 Introduction

 The HTTP Authentication framework includes two authentication

 schemes: Basic and Digest [2]. In the Basic scheme, the client

 authenticates itself with a user-ID and a password for each realm.

 The Basic scheme is perceived as insecure since the user credentials

 are transmitted across the public network in a cleartext format. The

 Digest scheme is based on cryptographic hashes and is consequently

 perceived as a more secure authentication scheme than Basic, but is

 limited the use of passwords. See [2] for detailed information about

 the general HTTP authentication protocol.

 The PPP Extensible Authentication Protocol (EAP) is a general

 protocol for PPP authentication [3]. Even though EAP was originally

 developed as a link layer protocol, it can also be applied at the

 application layer. EAP supports multiple authentication mechanism

 (e.g. smart cards, Kerberos, Public Key, One Time Passwords, and

 others) and it can, by definition, be easily extended to support new

 authentication mechanisms [see e.g. 4, 5, 6, 7]. EAP packets are

 defined in a binary format, and their contents depend highly on the

 used authentication scheme.

 HTTP EAP Authentication Scheme supplements HTTP Authentication with

 EAP functionality. This opens up several new authentication schemes

 for HTTP Authentication without additional specification work.

2 HTTP EAP Authentication Scheme

 The HTTP EAP Authentication Scheme delivers base64 encoded EAP

 packets within HTTP Authentication headers (e.g. WWW-Authenticate

 Response headers and Authorization Request headers). EAP packets

 include all relevant information about the required authentication

 scheme, e.g. authentication scheme, packet type (request, response,

 success or failure) and/or challenge. The content of these packets

 is up to the chosen EAP authentication scheme.

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

 The progression of an authentication procedure depends also on the

 chosen authentication mechanism. Typically, the authenticator sends

 an initial Identity Request followed by one or more Requests for

 authentication information. The peer sends a Response packet in

 reply to each Request. As with the Request packet, the Response

 packet contains a type field, which corresponds to the type field of

 the Request. The authenticator ends the authentication phase with a

 Success or Failure packet. See Figure 1.

 User agent Server

 GET

 -->

 401 Unauthorized, WWW-Authenticate: EAP <EAP ID REQ>

 <--

 Authorization: EAP <EAP ID RESP>

 -->

 401 Unauthorized, WWW-Authenticate: EAP <EAP CHALLENGE>

 <--

 Authorization: EAP <EAP RESP>

 -->

 200 OK, Authentication-Info: EAP <EAP SUCCESS>

 <--

 Figure 1. HTTP EAP Authentication message flow

 This message flow above represents only the typical situation.

 Variations of the flow are also possible in the following

 situations:

 - The chosen authentication mechanism requires more than the single

 challenge-response message pair shown. Any number of message

 exchanges are allowed here.

 - Error situations result in terminating the flow from the server’s

 side with an error response. This response could be one of 401

 Unauthorized, 403 Forbidden, or 407 Proxy Authentication Required.

 For 401 and 407, the client distinguishes the error situation from

 the continuation of the EAP exchange by the existence of EAP

 FAILURE payload, or the lack of any EAP payload.

 - Error situations from the client’s side result in terminating the

 communications with the server.

 - Certain EAP authentication mechanisms such as [7] allow an

 optimized flow where identity request does not need to be sent. In

 these cases, if the client knows it will be demanded EAP

 authentication, it can include an unsolicited EAP ID RESP already

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

 in the GET message. This would enable the server to start the

 actual authentication exchange immediately.

 - EAP authentication was shown to be run towards the server which

 responds with 401 Unauthorized responses. It is also possible to

 run towards a proxy, which responds with 407 Proxy Authentication

 Required responses.

 In this document, we define three new header types for the HTTP

[Alcatel] the above is misleading as these are not new header types (already
defined in RFC 2617) but rather new schemes in those existing header types.

 authentication framework. These headers, WWW-Authenticate Response

 Header, Authorization Request Header and Authentication-Info

 Response Header, are needed for making EAP as an independent HTTP

 authentication scheme.

2.1 The WWW-Authenticate Response Header

 The general HTTP authentication framework uses an extensible, case-

 insensitive token to identify the authentication scheme.

 Authentication scheme identifier is followed by a comma-separated

 list of attribute-value pairs, which carry the parameters necessary

 for achieving authentication via that scheme.

 auth-scheme = token

 auth-param = token "=" (token | quoted-string)

 If a server receives a request for an access-protected object

 without an acceptable Authorization header, the server responds with

 a "401 Unauthorized" status code, a WWW-Authenticate header and at

 least one challenge applicable to the requested resource. A Proxy

 acts in the same way but it uses a "407 Proxy Authentication

 Required" status code instead.

 challenge = auth-scheme 1*SP 1#auth-param

 The authentication parameter realm is defined for all authentication

 schemes:

 realm = "realm" "=" realm-value

 realm-value = quoted-string

 The realm value and the canonical root URL of the server being

 accessed define the protection space.

 The realm directive (case-insensitive) is required for all

 authentication schemes that issue a challenge. The realm value

 (case-sensitive) is a string, which may have additional semantics

 specific to the authentication scheme.

 For HTTP EAP Authentication, the framework above is utilized as

 follows:

 challenge = "Eap" eap-challenge

 eap-challenge = 1#(realm | eap-param)

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

 realm = "realm" "=" <"> realm-value <">

 realm-value = token ["@" token]

 eap-param = "eap-p" "=" <"> eap-packet <">

 eap-packet = <base64 encoded eap-packet, except

 not limited to 76 char/line>

 The realm value SHOULD be globally unique. Proxy servers are

 RECOMMENDED to use globally unique realm values in order to be able

 to recognize their set of user credentials in a multi-proxy

 authentication scenario. Implementations MAY use the form "local-

 realm@host".

 The realm value should be considered as an opaque string, which can

 only be compared for equality with other realms on that server. The

 server will service the request only if it can validate the user

 credentials for the protection space of the Request-URI.

 EAP packets have a general structure consisting of four basic

 fields: code, identifier, length and data. The Code field is one

 octet and it identifies the type of the EAP packet. Packet type is

 either a request, response, success, or failure. The Identifier

 field is also one octet and it is used for matching responses with

 corresponding requests. The Length field is two octets and it

 indicates in octects the length of the whole EAP packet including

 code, identifier, length and data fields. The Data field is zero or

 more octets and its format depends on the content of Code field. The

 example below demonstrates the general structure of EAP packets.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Code | Identifier | Length |

 +-+

 | Data ...

 +-+-+-+-+

 All these fields (Code, Identifier, Length, and Data) are included

 in the eap-packet in base64 form. Note that since the packets are

 self-identifying and self-delimiting it is allowed to include

 multiple EAP packets within one eap-packet, should some EAP

 mechanism be able to benefit from this.

 Example below demonstrates how a WWW-Authenticate Response Header

 using EAP authentication would look like:

 WWW-Authenticate: eap realm="BollyWorld@example.com",

 eap-p="QWxh4ZGRpb2jpvcGVuNlctZQ=="

 where "BollyWorld" is the string assigned by the server to identify

 the protection space of the Request-URI at server "example.com".

 A proxy may respond with the same challenge using the Proxy-

 Authenticate header field. Then it is especially important to

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

 maintain global uniqueness for the realm values, since a request may

 have credentials for multiple Proxy-Authenticate challenges.

2.2 The Authorization Request Header

 In the general HTTP authentication framework, a user agent that

 wishes to authenticate itself with an origin server or a proxy MAY

 do so by including an Authorization header or a Proxy-Authorization

 header field to the request. The authorization field value(s)

 consists of credentials containing the authentication information of

 the client for the realm of the resource being requested. The user

 agent MUST apply the strongest authentication scheme it understands

 and request credentials from the user based upon the corresponding

 challenge.

 credentials = auth-scheme #auth-param

 For HTTP EAP Authentication, the framework above is utilized as

 follows:

 credentials = "Eap" eap-response

 eap-response = 1#(realm | eap-param)

 eap-param = "eap-p" "=" eap-packet

 eap-packet = <base64 encoded eap-packet, except

 not limited to 76 char/line>

 The value of the realm field must be that supplied in the WWW-

 Authenticate or Proxy-Authenticate response header for the resource

 being requested.

 Example below demonstrates how the Authorization Request Header

 using EAP authentication would look like:

 Authorization: Eap realm="BollyWorld@example.com",

 eap-p="QWxhZGRpbjpvcGVuIHNlc2FtZQ=="

 Rules for handling potential user identifiers, passwords, challenges

 and so on, are defined in EAP protocol [3].

2.3 Authentication-Info Response Header

 The Authentication-Info header is used by the server to communicate

 information back to the client. This can be either the successful

 authentication in the response, or the continuation of the EAP

 mechanism.

 auth-info = #auth-param

 For HTTP EAP authentication the framework above is utilized as

 follows:

 Auth-info = eap-packet

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

 eap-packet = <base64 encoded eap-packet, except

 not limited to 76 char/line>

 Example below demonstrates how the Authentication-Info Response

 Header using EAP authentication would look like:

 Authentication-Info: QWxhZGRpbjpvcGVuIHNlc2FtZQ==

 The semantics of Proxy-Authentication-Info follow those of

 Authentication-Info. Proxy-Authentication-Info is used by proxy

 servers in conjunction with the "407 Proxy Authentication Required"

 response, and the consequent client authorization request.

3 Security Considerations

 Very little about the security of HTTP EAP Authentication can be

 stated without knowing the chosen EAP authentication scheme.

 Generally speaking, depending on the chosen EAP authentication

 scheme, HTTP EAP is subject to the same security threats as HTTP

 Authentication. However, there are some general aspects, which

 SHOULD be considered when analyzing the security of HTTP EAP

 Authentication:

 1) Authentication of clients: All EAP mechanisms authenticate the

 client, using a method dependent on the mechanism.

 2) Authentication of servers: Some EAP mechanisms also perform

 mutual authentication.

 3) Using the strongest authentication mechanism available: Servers

 and clients accepting multiple authentication mechanisms should

 be aware of the possibility of ’bidding-down’ attacks where a

 man-in-the-middle modifies the authentication offers until the

 peers agree on an easily breakable mechanism. In general, we

 expect HTTP EAP _based servers to require a predefined

 authentication mechanism from a particular client in any case,

 which avoids this problem. For instance, the user data base at

 a server indicates that user A has a particular public key. The

 server should then insist on using the EAP TLS [4] mechanism to

 authenticate the user.

 4) Confidentiality: Each EAP mechanism offers its specific

 protection schemes for the exchanged credentials. For instance,

 the EAP AKA [7] mechanism sends secure cryptographic hashes

 rather than cleartext passwords like HTTP Basic Authentication

 does, even if both are based on the concept of a shared

 secret. As in EAP in general, HTTP EAP does not protect against

 revealing the identity of the client since the EAP ID RESP

 packets are not encrypted. Confidentiality and integrity of

 the HTTP requests themselves beyond the authentication

 parameters is not within the scope of HTTP EAP, but is

 discussed below under item 7.

 5) Replay protection: Each EAP mechanism offers its specific

 protection schemes for preventing the replay of the

 credentials. For instance, the EAP AKA mechanism uses a

 cryptographically strong sequence number scheme. This is in

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

 contrast to the replay possibilities that exist for the HTTP

 Basic Authentication, and is similar to the use of nonces in

 the HTTP Digest Authentication.

 6) Integrity protection: Again, each EAP mechanism offers its

 specific protection schemes against a man-in-the-middle

 modifying the authentication credentials. Mechanisms based on

 secure hashes prevent any modifications to the authentication

 parameters themselves. Again, integrity of the HTTP requests

 themselves beyond the authentication parameters is a separate

 issue and is discussed below.

 7) Integrity and confidentiality protection of the HTTP request

 itself is also an important issue. Without such protection, it

 is possible for a man-in-the-middle to read and modify the

 actual contents of the request, regardless of any

 authentication that was performed

[Alcatel] As explained below, the message is always first sent in clear until
authentication has taken place. Therefore, confidentiality of the HTTP request
itself is made rather impossible. A possible solution would be for the client to
first submit a request containing minimal information, and only resubmit the
(complete) request once authentication has taken place and both integrity and
confidentiality keys have been derived from the auth scheme (if applicable in
the auth scheme).

 Currently, there are no such authentication schemes in HTTP

 authentication, which would fully protect the integrity of HTTP

 messages. The HTTP Basic Authentication scheme provides no integrity

 protection. HTTP Digest Authentication provides only limited (and

 optional) protection. Most header fields and their values could be

 modified as part of a man-in-the-middle attack. It should also be

 noted that HTTP EAP does not inherently provide the integrity

 protection qualities present in Digest, namely the protection of

 Request-URI and request-method (and possibly the payload).

 Even though HTTP EAP Authentication scheme does not include a

 protection mechanism, it can be used for setting up one. Chosen EAP

 authentication scheme may be used to generate session keys, which

 together with some additional security protocol can provide e.g.

 integrity protection.

 However, such protection should include the protection of original

 HTTP requests as well. This is not trivial because session

 protection keys are generated during the authentication, which takes

 place after submitting the request. In practice, full protection is

 only possible if the request is repeated at the end of the

 authentication procedure. This is, however, already the behavior in

 many typical usage situations. For instance, when authenticating a

 SIP REGISTER message, the authentication procedure takes a few

 message rounds, and on each round the REGISTER message is repeated

 until the session keys are available and the procedure is completed.

 The last such message can then use integrity protection. Servers

 that want to avoid man-in-the-middle attacks MUST NOT act on

 requests until both the authentication procedure has completed and

 the messages have been received under integrity protection.

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

4 References

 1 RFC 2119 Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997

 2 Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach,

 P., Luotonen, A. and Stewart, L. "HTTP Authentication: Basic and

 Digest Access Authentication", RFC 2617, June 1999.

 3 Blunk, L. and Vollbrecht, J. "PPP Extensible Authentication

 Protocol (EAP)" RFC 2284, March 1998.

 4 Aboba, B. and Simon, D. "PPP EAP TLS Authentication Protocol" RFC

 2716, October 1999.

 5 Aboba, B. "EAP GSS Authentication Protocol" Internet Draft,

 draft-aboba-pppext-eapgss-08.txt, October 2001.

 6 Carlson, J. "PPP EAP SRP-SHA1 Authentication Protocol" Internet

 Draft, draft-ietf-pppext-eap-srp-03.txt, July 2001.

 7 Arkko, J. and Haverinen, H. "EAP AKA Authentication" Internet

 Draft, draft-arkko-pppext-eap-aka-00.txt, May 2001.

 1 RFC 2119 Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997

 2 Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach,

 P., Luotonen, A. and Stewart, L. “HTTP Authentication: Basic and

 Digest Access Authentication”, RFC 2617, June 1999.

 3 Blunk, L. and Vollbrecht, J. “PPP Extensible Authentication

 Protocol (EAP)” RFC 2284, March 1998.

 4 Aboba, B. and Simon, D. “PPP EAP TLS Authentication Protocol” RFC

 2716, October 1999.

 5 Aboba, B. “EAP GSS Authentication Protocol” Internet Draft,

 draft-aboba-pppext-eapgss-03.txt, February 2001.

 6 Carlson, J. “PPP EAP SRP-SHA1 Authentication Protocol” Internet

 Draft, draft-ietf-pppext-eap-srp-01.txt, May 2001.

 7 Arkko, J. and Haverinen, H. “EAP AKA Authentication” Internet

 Draft, draft-arkko-pppext-eap-aka-00.txt, May 2001.

5 Acknowledgements

 The authors wish to thank Henry Haverinen and Bernard Aboba for

 interesting discussions in this problem space.

Torvinen et al Expires May 2002

 HTTP Authentication with EAP November 2001

6 Author's Addresses

 Jari Arkko

 Ericsson

 02420 Jorvas Phone: +358 40 5079256

 Finland Email: jari.arkko@ericsson.com

 Vesa Torvinen

 Ericsson

 02420 Jorvas Phone: +358 40 7230822

 Finland Email: vesa.torvinen@ericsson.com

 Aki Niemi

 Nokia Networks

 P.O. Box 301

 00045 Nokia Group Phone: +358 50 3891644

 Finland E-mail: aki.niemi@nokia.com

Torvinen et al Expires May 2002 10

