

	
3GPP TSG-SA3 Meeting #112	S3-233820
Goteborg, Sweden, 14 – 18th August 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	33.203
	CR
	0272
	rev
	-
	Current version:
	17.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Security vulnerability fix for use of AES-GCM and AES-GMAC in 33.203

	
	

	Source to WG:
	Apple

	Source to TSG:
	

	
	

	Work item code:
	eCryptPr
	
	Date:	Comment by John MEREDITH: Format yyyy-MM-dd.
	2023-8-7

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17(TBD)

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	When AES-GCM or AES-GMAC are in used for IPsec, it is vital that the nonce supplied to the algorithm for encrypting each packet is never repeated under the same key. To achieve this, the encrypter for an IPsec Security Association (SA) is required to generate an Initialization Vector (IV) for each encrypted packet that is not repeated for the lifetime of the SA. IPsec does not provide a method for peers to coordinate IV generation across SAs, so it is possible for IVs to be duplicated across multiple SAs. In order to ensure this does not lead to nonce reuse under the same key, a salt value is supplied to IPsec along with the key, which is combined with each IV to form the nonce supplied to the algorithm. If two or more IPsec SAs use the same key, it is required that the salt values supplied for the SAs be different.

According to Section 10 of RFC 4106, which describes the use of AES-GCM in IPsec ESP: “When IKE is used to establish fresh keys between two peer entities, separate keys are established for the two traffic flows. If a different mechanism is used to establish fresh keys (one that establishes only a single key to encrypt packets), then there is a high probability that the peers will select the same IV values for some packets. Thus, to avoid counter block collisions, ESP implementations that permit use of the same key for encrypting and decrypting packets with the same peer MUST ensure that the two peers assign different salt values to the security association (SA)”

The current version of Annex I specifies that all 4 IPsec SAs established for SIP security will use the same salt value, which violates the above security requirement and thus can lead to nonce resue under the same key. This document proposes a modification to the salt generation procdeure that will remedy this.
There was discussion in SA3 on the concern of backward compatibility issue, so this CR also proposes to fix this issue by adding the new algorithm addressing the backward compatibility issue in the second Change.
In Set-up of the security associations procedure (Clause 7.2 in TS 33.203), UE has to contain a list of identifiers for the integrity and encryption algorithms, which the UE supports in SM1 “register” message. And the SA (security association) negotiation procedure is based on RFC 3329 with some modifications shown in clause Annex H. Therefore, When UE supports the new salt value derivation method, UE should indicate a new algorhtm in SM1 ”register” message. Legacy UE shall not indicate this new algorithm. In the network side, only updated S-CSCF will choose the new algorithm using new salt value derivation method. In this way, the backward compatibility issue can be addressed.

	
	

	Summary of change:
	The existing method for generating salt values for AES-GCM and AES-GMAC is extended to provide unique salt values for each SA by XOR’ing the value output from the KDF with the SPI for the SA.

	
	

	Consequences if not approved:
	Implementations adhering to the existing specification could be vulnerable to nonce reuse attacks which will compromise the confidentiality provided by AES-GCM and the integrity protection provided by AES-GCM and AES-GMAC.

	
	

	Clauses affected:
	Annex I, Annex H

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

*** FIRST CHANGES ***

[bookmark: _Toc492909175][bookmark: _Toc90905041]Annex I (normative):
Key expansion functions for IPsec ESP
Integrity Keys:
If the selected authentication algorithm is HMAC-SHA-1-96 then IKESP is obtained from IKIM by appending 32 zero bits to the end of IKIM to create a 160‑bit string.
If selected authentication algorithm is AES-GMAC as specified in RFC 4543 [74] with 128 bit key then IKESP = IKIM.
The salt value specified in Section 3.2 of RFC 4543 [74] shall be derived using the key derivation function KDF defined in Annex B of TS 33.220 [66]. The input Key to the KDF function shall be equal to the concatenation of CKIM and IKIM: CKIM || IKIM.
If the “algorithm” value is set to “aes-gmac” when negotiating the SA using RFC 3329 as shown in Annex H, Tthe input S to the KDF function shall be formed from the following parameters:
-	FC = 0x58.
-	P0 = "AES_GMAC_SALT" .
-	L0 = length of the string “AES_GMAC_SALT” (i.e. 0x00 0x0D).
The salt value shall consist of the 32 least significant bits of the 256 bits of the KDF output. This salt value derivation method is not recommended.
If the “algorithm” value is set to “aes-gmac-R17” when negotiating the SA using RFC 3329 as shown in Annex H, the input S to the KDF function shall be formed from the following parameters:
-	FC = 0x58.
-	P0 = "AES_GMAC_SALT" .
-	L0 = length of the string “AES_GMAC_SALT” (i.e. 0x00 0x0D).
The salt value for each IPsec SA shall consist of the 32 least significant bits of the 256 bits of the KDF output XOR’d with the 2 bits, one bit representing for direction (“0” for UE to P-CSCF, “1” for P-CSCF to UE), one bit representing for the role (“0” for client, “1” for server).
"Hmac-sha-1-96" is not recommended.
Encryption Keys:
If selected encryption algorithm is AES‑CBC as specified in RFC 3602 [22] with 128 bit key then CKESP = CKIM .
If selected encryption algorithm is AES‑GCM as specified in RFC 4106 [73] with 128 bit key then CKESP = CKIM. The salt value specified in Section 4 of RFC 4106 [73] shall be derived using the key derivation function KDF defined in Annex B of TS 33.220 [66]. The input Key to the KDF function shall be equal to the concatenation of CKIM and IKIM: CKIM || IKIM.
When the “algorithm” value is “aes-gcm” when negotiating the SA using RFC 3329 as shown in Annex H, Tthe input S to the KDF function shall be formed from the following parameters:
-	FC = 0x59
-	P0 = “AES_GCM_SALT”
-	L0 = length of the string “AES_GCM_SALT” (i.e. 0x00 0x0C)
The salt value shall consist of the 32 least significant bits of the 256 bits of the KDF output. This salt value derivation method is not recommended.
When the “algorithm” value is “aes-gcm-R17” when negotiating the SA using RFC 3329 as shown in Annex H, the input S to the KDF function shall be formed from the following parameters:
-	FC = 0x59
-	P0 = “AES_GCM_SALT”
-	L0 = length of the string “AES_GCM_SALT” (i.e. 0x00 0x0C)
The salt value for each IPsec SA shall consist of the 32 least significant bits of the 256 bits of the KDF output XOR’d with the 2 bits, one bit representing for direction (“0” for UE to P-CSCF, “1” for P-CSCF to UE), one bit representing for the role (“0” for client, “1” for server).
"aes-cbc" is not recommended.

*** SECOND CHANGES ***

[bookmark: _Toc492909174][bookmark: _Toc90905040]Annex H (normative):
The use of "Security Mechanism Agreement for SIP Sessions" [21] for security mode set-up
The BNF syntax of RFC 3329 [21] is defined for negotiating security associations for semi-manually keyed IPsec or TLS in the following way:
	security-client		= "Security-Client" HCOLON sec-mechanism *(COMMA sec-mechanism)
	security-server		= "Security-Server" HCOLON sec-mechanism *(COMMA sec-mechanism)
	security-verify		= "Security-Verify" HCOLON sec-mechanism *(COMMA sec-mechanism)
	sec-mechanism		= mechanism-name *(SEMI mech-parameters)
	mechanism-name		= "ipsec-3gpp" / "tls"
	mech-parameters		= (preference / algorithm / protocol / mode / encrypt-algorithm / spi‑c / spi‑s / port‑c / port‑s)
	preference				= "q" EQUAL qvalue
	qvalue					= ("0" ["." 0*3DIGIT]) / ("1" ["." 0*3("0")])
	algorithm				= "alg" EQUAL ("hmac-sha-1-96" / "aes-gmac" / "aes-gmac-R17" / " null")
	protocol				= "prot" EQUAL ("ah" / "esp")
	mode					= "mod" EQUAL ("trans" / "tun" / "UDP-enc-tun")
	encrypt-algorithm	= "ealg" EQUAL ("aes-cbc" / "aes-gcm" / " aes-gcm-R17" / " null")
	spi‑c					= "spi‑c" EQUAL spivalue
	spi‑s					= "spi‑s" EQUAL spivalue
	spivalue				= 10DIGIT; 0 to 4294967295
	port‑c					= "port‑c" EQUAL port
	port‑s					= "port‑s" EQUAL port
	port					= 1*DIGIT
The changes compared to RFC 3329 [21] are:
	"alg" parameter: Addition of "aes-gmac" , " aes-gmac-R17" and "null". Removal of "hmac-md5-96"
	"ealg" parameter: Addition of "aes-cbc" , " aes-gcm-R17" ,and "aes-gcm" and " null" . Removal of "des-ede3-cbc"
	"mod" parameter: Addition of "UDP-enc-tun"
"Hmac-sha-1-96" and "aes-cbc" are not recommended.
The use of security association parameters is specified in clauses 7.1, 7.2, M.7.1 and M.7.2 of the present document. The parameters described by the BNF above have the following semantics:
	Mechanism-name: For manually keyed IPsec, this field includes the value "ipsec-3gpp". "ipsec‑3gpp" mechanism extends the general negotiation procedure of RFC 3329 [21] in the following way:
1	The server shall store the Security-Client header received in the request before sending the response with the Security-Server header.
2	The client shall include the Security-Client header in the first protected request. In other words, the first protected request shall include both Security-Verify and Security-Client header fields.
3	The server shall check that the content of Security-Client headers received in previous steps (1 and 2) are the same.
Mech-parameters: Of the mech-parameters, only preference is relevant when the mechanism-name has the value "tls".
	Preference: As defined in RFC 3329 [21].
	Algorithm: Defines the authentication algorithm. The algorithm parameter is mandatory. The value "aes-gmac" refers to the authentication algorithm ENCR_NULL_AUTH_AES_GMAC defined in IETF RFC 4543 [74]. The value "aes-gmac-R17” refers to the same algorithm with "aes-gmac" but only different salt value generation method. The value "null" shall only be used with encryption algorithm "aes-gcm".
	Protocol: Defines the IPsec protocol. May have a value "ah" or "esp". If no Protocol parameter is present, the value will be "esp".
NOTE 1:	According to clause 6 only "esp" (RFC 4303 [54]) is allowed for use in IMS.
	Mode: Defines the mode in which the IPsec protocol is used. May have a value "trans" for transport mode, and value "tun" for tunneling mode. If no Mode parameter is present, the value will be "trans".
NOTE 2:	Void.
	Encrypt-algorithm: If present, defines the encryption algorithm. The value "aes-cbc" refers to the algorithm defined in IETF RFC 3602 [22]. The value "aes-gcm" refers to the encryption algorithm AES-GCM with a 16 octet ICV defined in IETF RFC 4106 [73]. The value "aes-gcm-R17” refers to the same algorithm with "aes-gcm" but only different salt value generation method. If no Encrypt-algorithm parameter is present, the algorithm will be "null". The value "aes-gcm" shall only be used with authentication algorithm equal to "null".
	Spi‑c: Defines the SPI number of the inbound SA at the protected client port.
	Spi‑s: Defines the SPI number of the inbound SA at the protected server port.
	Port‑c: Defines the protected client port.
	Port‑s: Defines the protected server port.
It is assumed that the underlying IPsec implementation supports selectors that allow all transport protocols supported by SIP to be protected with a single SA.

*** END OF CHANGES ***
