3GPP TSG-SA3 Meeting #111
S3-233029
Berlin, Germany, 22 -26 May 2023

(revision of S3-yyxxxx)
Source:
NTT DOCOMO
Title:
pCR to 33.884 - TR cleanup
Document for:
Approval
Agenda Item:
5.11
1
Decision/action requested

It is proposed to accept the pCR below in order to remove all editor's notes in TR 33.884
2
References

[1]
3GPP TS 33.884
3
Rationale

In order to complete the TR 33.884, editor's notes need to be resolved. This contribution proposes to resolve the editor's notes by either turning them into notes or moving the FFS as a comment to the evaluation section.
Any other resolution of editor's notes agreed can take precedence over this kind of resolution.

In addition, the references have been fixed.
4
Detailed proposal

It is proposed to accept the following pCR for inclusion in TR33.884
++++++++++++++++ Begin changes ++++++++++++++

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.261: "Service requirements for the 5G system".

[3]
3GPP TR 23.700-95: "Study on application enablement aspects for subscriber-aware northbound API access".

[4]
IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

[5]
3GPP TS 33.122: "Security aspects of Common API Framework (CAPIF) for 3GPP northbound APIs".

[6]
openID.net: "OpenID Connect Core 1.0 incorporating errata set 1". Available at: https://openid.net/specs/openid-connect-core-1_0.html
[7]
IETF RFC 7009: "OAuth 2.0 Token Revocation".

[8]
IETF RFC 7515: "JSON Web Signature (JWS)".

[9]
IETF RFC 7636: "Proof Key for Code Exchange by OAuth Public Clients".

[10]
IETF RFC 7662: " OAuth 2.0 Token Introspection".

[11]
IETF RFC 7542: "The Network Access Identifier".

[12]
3GPP TS 23.222: "Common API Framework for 3GPP Northbound APIs".
[XX]
3GPP TS 33.535: "Authentication and Key Management for Applications (AKMA) based on 3GPP credentials in the 5G System (5GS)"
++++++++++++++++ Next changes ++++++++++++++

++++++++++++++++ Next changes ++++++++++++++

5
Key issues

5.1
Key issue #1: Checking authentication and authorization of invoker

5.1.1
Key issue details

Only certain invokers are permitted to invoke subscriber aware northbound APIs, Therefore it is necessary to authenticate and authorize these invokers to access the APIs. The requirements for CAPIF apply.

For SNAAPP, the API invoker can also reside on a UE.

5.1.2
Potential security requirements

The requirements for the CAPIF-2 interface of 33.122[5] clause 4.4 shall apply:

(quoted for convenience)

The CAPIF-2/2e reference points between the API invoker and API exposing function shall fulfil the following requirements:

-
 [CAPIF-SEC-4.4-a] Mutual authentication between the API invoker and the API exposing function shall be supported.
-
 [CAPIF-SEC-4.4-b] The transport of messages over the CAPIF-2 and CAPIF-2e reference points shall be integrity protected.
-
 [CAPIF-SEC-4.4-c] The transport of messages over the CAPIF-2 and CAPIF-2e reference points shall be protected from replay attacks.
-
 [CAPIF-SEC-4.4-d] The transport of messages over the CAPIF-2 and CAPIF-2e reference points shall be confidentiality protected.
-
 [CAPIF-SEC-4.4-e] Privacy of the 3GPP user over the CAPIF-2 and CAPIF-2e reference points shall be protected.
-
 [CAPIF-SEC-4.4-f] The API exposing function shall determine whether API invoker is authorized to access service API.

5.2
Key Issue #2: Checking authorization before allowing access

5.2.1
Key issue details

Resource owners need to be able to control access to their resources. In the use cases described in TR 23.700-95, the resource owner is the UE's user, or the UE's user has been given permission by the subscriber to authorize access to the resource.

5.2.3
Potential security requirements

-
Authn-1-ResOwner: when giving or revoking authorization, the resource owner shall be authenticated.

-
Authz-1-General: Access to resources of the resource owner via the northbound APIs shall only be allowed if the resource owner has authorized it.

-
Authz-2-App: Authorization shall be given to an application. Authentication of applications by the operating system of the UE is out of 3GPP scope.

-
Authz-3-OtherSub: In case it is not the resource owner triggering the AF to invoke an API, the triggerer UE of the AF shall be authorized by the resource owner to access the resource through the API.

-
Authz-4-Scope: The 5G system shall be able to limit the scope of API requests to resources owned by a resource owner.

-
Authz-5-Revoke: The resource owner shall be able to revoke authorization at any time. From then on access to resources based on the revoked authorization shall not be allowed.

Priv-1-MSISDN: The 5G system shall be able to preserve the confidentiality of the UE's external identity (i.e. MSISDN) against a third party.

++++++++++++++++ Next changes ++++++++++++++

6.1.3
Evaluation

The solution works when the TLS with OAuth token is selected.

This solution assumes that the resource owner is human user.
This solution addresses the requirements Authz-1, Authz-2, Authz-3 and Authz-4, but does not address the following requirements in KI#2:

-
This solution does not touch authentication of the resource owner or API invoker by the authorization server, it may be addressed by other solution.

-
This solution does not touch authentication between API invoker and CCF and authentication between API invoker and AEF, it may be addressed by other solution.

-
This solution does not touch revocation of authorization, it may be addressed by other solution.

-
This solution does not touch privacy of the UE's external identity against the third-party, it may be addressed by other solution. This solution does not address a static token claim issue after token revocation.

NOTE:
Clause 6.1.2.3 has provided mapping to the use case defined in TR 23.700-95 [3].

Note: How this solution aligns with Oauth architecture is not evaluated in the presetn document.

Note:
Sharing user credential to application client is not evaluated in the present document.
Note:
User authentication is not evaluated in the present document.
++++++++++++++++ Next changes ++++++++++++++

6.2.3
Evaluation

This solution can be used to address Authn-1-ResOwner.

++++++++++++++++ Next changes ++++++++++++++

6.3.3
Evaluation

The presented approach provides a solution for the case that API Invoker is part of the UE and that this API Invoker can be used by applications on a mobile device to utilize 5G northbound APIs. The approach is thus complementary to other solutions which target the case that the API Invoker is part of the third-party application.

Usage of AKMA guarantees that the client Id of the API Invoker is really bound to the Id of the UE.

Authentication of the UE is executed using http authentication mechanism, i.e. as part of the http token request.

CAPIF onboarding for assignment of Client Id and Client secret is not executed, since Client Id and Client secret can be derived from the 5G key hierarchy

In this solution the 5G system only authenticates and authorizes the UE. The 5G system does not authenticate or authorize the (invisible) third party application or a user. That is, the solution assumes that the UE is the resource owner or requesting party.

In case of one UE accessing resources of another UE, the subscriber of the second UE is not able to authorize the third-party application used on the first UE. Such scenarios can be avoided, if API calls are restricted to the scope of each UE and API invocation crossing UEs is handled on the application layer.

The main changes required for the solution are related to the deployment of the API Invoker on the UE and the definition of interface between API Invoker and the third-party application. However, this interface is out of scope of this solution and out of scope of SA3.

Changes are also needed with respect to the definition of a new claim in the access token identifying the UE and the ability of the AEF to restrict the scope of API calls to the UE identified in the token claims.

This solution cannot authorize the API invoker to access a specific resource (e.g. location information, UE reachability information) of a specific resource owner, but fine granular authorization scopes on the level of individual resources are not in scope of this solution. An API invoker that is authorized to access the one resource (e.g. location information) of the UE could also access other resources of the same UE.

In the solution the identity of the UE is not disclosed to a third party.

NOTE:
 Including of authentication in a http request (like the token request) is very common practice, i.e. http basic or http digest authentication (see for example in clause 4.1.3 in RFC 6749 [4] or the definition of AKMA profile in B.1.2.2 of TS 33.535 [XX]).
++++++++++++++++ Next changes ++++++++++++++

6.4.2
Solution details

Figure 6.4.2-1: UE originated API Invoker authentication, authorization, and secure connection establishment process

The steps shown in Figure 6.4.2-1 is described as follows:

Precondition: The UE (i.e. an API invoker) can be registered to the network.

Steps 1-6 API Invoker Onboarding:

The UE is provisioned with a CAPIF Core Function (CCF) information such as CCF address/ID (e.g. after a successful primary authentication in any protected message). The UE and the network can derive the onboarding enrolment information such as CAPIF security credentials i.e. a CCF key (based on UE 5G security context e.g. AKMA key/AUSF key). The UE can derive a CCF key (Kccf) and key identifier (Kccf ID) which can be used to authenticate and establish a secure communication (e.g. TLS PSK based on CCF Key) with the CCF during the onboarding process.

NOTE 1: The 5G security key used to generate CAPIF security key and the input used are up to the normative work.

1. The API Invoker can send an Onboarding Service request to the CCF which can include Onboarding type (i.e. Subscriber Indication or UE service based), Kccf ID, UE ID (e.g. GPSI).

2.
Based on the received Onboarding type, the CCF determines to fetch security context related to the UE. The CCF can send a key request to the Core NF/AF which can include UE ID, and Kccf ID

Further the Core NF/AF provides the SUPI, and Kccf to the CCF in a Key Response message.

3.
The CCF stores the CCF key, Kccf ID and UE ID.

4.
The API Invoker and the CCF can perform mutual authentication and establish secure session (e.g. TLS PSK) based on Kccf shared between API Invoker and CCF.

5.
With a secure session established, the API Invoker sends an Onboard API Invoker Request message to the CCF which includes the UE ID (SUPI/GPSI).

6.
The CCF generates an API invoker's profile and onboard secret as specified in TS 23.222 [12]. The AEF Key can be used by the API Invoker to authenticate and establish secure session with the AEF as in TS 33.122 Clause 6.5.2.3 [5]. The AEF key can be derived from Kccf and other input parameters: API Invoker ID, CCF ID, Target AEF ID(s)/information, and Nonce.

The CCF on a successful authentication and authorization, it can locally store the API Invoker profile with API Invoker ID, Onboard Secret, AEF key along with Target AEF information.

The CCF can respond with an Onboard API invoker response message same as TS 33.122 [5] which can include the CAPIF core function assigned API invoker ID, AEF Authentication, and authorization information, and/or Onboard Secret, along with other information such as nonce, AEF information (Target AEF ID).

The API Invoker stores information received from step 6 and the API invoker is onboarded.

API Invoker can perform CAPIF-1 authentication anytime with CCF based on TS 33.122 [5].

Steps 7-9 Access Token Request/Response:

7.
The API Invoker sends Oauth 2.0 based access token request as in TS 33.122 Clause 6.5.2.3 [5] (i.e. with grant_type client credentials if the API Invoker is the Resource Owner.)

If the API Invoker is not a resource owner, for OAuth 2.0 access token request the grant_type may be Authorization Code Grant as described in RFC 6749 [4].

Similar to TS 33.122 Clause 6.5.2.3 [5], the API invoker may include the CAPIF core function assigned API invoker ID and the Onboard_Secret in the OAuth access token request message for the CAPIF core function to validate the access token request.

8.
The CCF based on the local policy checks if there exists any related authorization or prior consent information managed in the network related to allowing the API invoker to consume any service API invocation related to the UE.

NOTE 2: The collection and management of user consent or authorization information related to a service exposure is outside the scope of this solution. It is assumed that the network manages such authorization information in any storage function outside the scope of this solution.

9. The CCF generates and sends an Oauth access token (based on OAuth 2.0) to be used as AEF Access token. The access token claims can include UE ID and CCF ID along with other claims in TS 33.122 Clause C.2.2 [5].

Steps 10-15 Service API Invocation:

10.
The API Invoker derives an AEF Key (Kaef) from CCF Key (Kccf) and respective input parameters similar to CCF on a successful CAPIF 1 authentication and authorization. The API Invoker can send Authentication Initiation Request to the AEF, which includes the CCF assigned API invoker ID, and UE ID.

11.
The AEF can send API Invoker ID, and UE ID to request the security information from the CCF. The CCF provides the security information related to the chosen security method (e.g. TLS-PSK: AEFPSK) along with AEF Key, Service API(s) authorization information (can be a list of Service APIs which can be invoked by the API Invoker related to the UE ID), and Oauth access token i.e. AEF Access token (to authorize the API invoker to request the service API invocation from AEF) to the AEF over CAPIF-3 reference point. The CCF can provide the remaining validity timer value for the AEF Key (i.e. AEFPSK) as in TS 33.122 Clause 6.5.2.1 [5].

Alternatively, the service information and access token sending can be skipped as it can be bound to the access token as claims (later received in step 13a) from the API invoker.

12. After fetching the relevant AEF Key for the authentication, the AEF can send Authentication Initiation Response message to API invoker to initiate the TLS session establishment. The AEF starts the validity timer based on the value received from the CAPIF core function in step 11.

The API Invoker and the AEF can perform mutual authentication using the AEF key and establish TLS session.

13a. The API invoker can send Invocation service request to the AEF which can include Requested Service API(s) information, API Invoker ID, UE ID, and AEF Access Token (received from CCF).

13b. The AEF can authorize the API invoker's service API invocation request based on authorization information (i.e. validating the claims in the Oauth based AEF Access Token) obtained from CAPIF core function as specified in subclause 8.16 of TS 23.222 [12].

14. On a successful access token validation, the AEF considers Invocation service request authorization as successful, execute API request and can send Invocation service response with success indication.

NOTE 3: According to TS 33.122, API provider domain provides Onboarding enrolment information to the API invoker as a prerequisite to the Onboarding procedure. Therefore, for the UE originated API Invocation case, the solution enables provision of onboarding enrolment information based on UE's established security context as described in steps 1.

NOTE 4: The user consent information collection and related management is outside the scope of this solution.

++++++++++++++++ Next changes ++++++++++++++

6.6.1
Introduction

This solution addresses the security requirement about authorization by the resource owner before allowing access to resources of the resource owner, which is detailed in key issue #2.

It is assumed that authorization information by the resource owner has been received and stored in the authorization server with a method out of the scope of this solution.

Also, the consideration whether the resource owner is the subscription user or the subscription owner is out of scope of this solution.

The MNO learns the authorization information from the subscription user or from the subscription owner and stores the authorization information, which is bound to the UE identifier, in the PLMN trusted domain. How the MNO authenticates the resource owner and learns the authorization information is out of scope of this solution.

This solution covers the case that the API invoker is the AF accessing to resources related to a UE or the API invoker is the application in the UE accessing to resources related to that UE.

How the AF maps the target username in the application layer into the UE identifier is out of scope of this solution. The authentication and authorization behind the AF-CAPIF interaction for the triggering UE and user is out of scope.

This solution assumes that the authorization server is co-located with the CAPIF Core Function (CCF). This solution does not specify the place where the authorization information is stored. The CCF may store the authorization information in an external storage, and in this case it is assumed that there is a secure channel between the CCF and the external storage.

The storage is used to store dynamic authorization information received, from the resource owner, using MNO specific methods. This storage can be co-located with the CCF/authorization server.

This solution works as follow for the use case #1 defined in Annex A of TR 23.700-95 [3]. When the user starts a gaming application, the gaming application can check whether there is already a permission for the QoS changes via the gaming server which assumes the API invoker role. If there is no permission and if the gaming application wants to offer a better quality, the gaming application may ask permission for QoS changes. If the user wants to have a better quality, the user can give permission using operator specific mechanisms which can be a web portal or a mobile application of the operator.

Regarding use case #2 in Annex A of TR 23.700-95 [3], this solution proposes alternative to the flow defined in [3] addressing the following issues in [3], namely if the flow in [3] is applied, the MNO will need to authenticate the mobile application instance running in the UE Y and will also need to ensure that the end user in the UE Y triggers the location tracking. However, the MNO cannot ensure the correctness of the information about the end user of UE Y. Therefore, it seems that the best way to realize this use case is to have the authorization mechanism in the application layer by the application server, which is out of 3GPP scope. Following this motivation, the solution proposes that the UE should only be able to access its own resources. After learning its own location, UE X can share the location information with UE Y directly or via the application server. How this sharing is realized is out of 3GPP scope.

Alternatively, use case #1 can be used to realize use case #2, as follows: The application server (AF) accesses the location information of UE X on behalf of UE Y; for this to happen the resource owner of UE X needs to authorize the application server to access UE X's location, and the end user of UE X needs to give permission in the application layer for sharing the location information with the user of UE Y.
Authorization always needs to be given before making an API call.

++++++++++++++++ Next changes ++++++++++++++

6.6.3
Evaluation

The solution addresses the following cases:

-
The AF accesses resources related to a UE

-
The application in the UE is accessing the resources related to that UE.

The solution assumes that there is a mechanism in the UE for authorization in the application-level granularity.

This solution is a future proof solution considering possible extension of the definition of resource owner to cover the subscribers in addition to the users.

This solution assumes that the API invoker application in the operating system of the UE is authenticated and authorized by a method out of scope.

This solution is very similar to the existing mechanism for the AF originated API invocation case where the AF is outside of the UE. In the existing mechanism, the CCF has the authorization information that indicates whether the AF is allowed to consume the service API. The enhancement in this solution is that the CCF also checks the authorization information that indicates whether the AF is allowed to access the resources of the UE.

Considering the legacy mechanisms, this solution introduces a new claim in the token to inform the AEF that the user authorization has been checked by the CCF.

This solution requires storage capability to store resource owner authorization information.
Authorization always needs to be given before making an API call.
Note: The impact of needing storage, and requirements for getting the authorization information into the storage are not addressed in this evaluation.

++++++++++++++++ Next changes ++++++++++++++

6.7.2
Solution details

The solution uses the PKCE protocol flow with the following mapping: the client in RFC 7636 [9] is the application on the UE. The authorization server in RFC 7636 [9] is the authorization function in the network.

The following figure gives an example PKCE flow to help understanding the concept of the PKCE flow. This flow could look different for a different authentication mechanism.

 EMBED Mscgen.Chart
[image: image1.wmf]R

e

s

o

u

r

c

e

O

w

n

e

r

A

Z

F

B

r

o

w

s

e

r

A

p

p

l

i

c

a

t

i

o

n

1

:

A

c

c

e

s

s

2

:

c

r

e

a

t

e

r

a

n

d

r

h

a

s

h

_

r

=

h

a

s

h

(

r

)

3

:

r

e

d

i

r

e

c

t

t

o

A

Z

F

h

a

s

h

_

r

4

:

G

e

t

l

o

g

i

n

h

a

s

h

_

r

5

:

s

t

o

r

e

h

a

s

h

_

r

6

:

l

o

g

i

n

f

o

r

m

7

:

c

r

e

d

e

n

t

i

a

l

s

8

:

a

u

t

h

e

n

t

i

c

a

t

e

u

s

e

r

9

:

r

e

d

i

r

e

c

t

t

o

A

p

p

w

i

t

h

c

o

d

e

c

1

0

:

a

c

c

e

s

s

c

o

d

e

c

1

1

:

r

e

q

u

e

s

t

t

o

k

e

n

C

l

i

e

n

t

I

D

,

r

,

c

o

d

e

c

1

2

:

c

h

e

c

k

:

C

l

i

e

n

t

I

D

h

a

s

h

(

r

)

=

h

a

s

h

_

r

c

o

d

e

c

1

3

:

r

e

t

u

r

n

t

o

k

e

n

Figure 6.7.2-1: Example PKCE flow

Note:
The solution description does not detail which parts need to be specified in stage 2.

++++++++++++++++ Next changes ++++++++++++++

6.8.2
Solution details

 EMBED Mscgen.Chart
[image: image2.wmf]A

p

p

l

i

c

a

t

i

o

n

e

x

p

o

s

i

n

g

f

u

n

c

t

i

o

n

A

u

t

h

o

r

i

z

a

t

i

o

n

f

u

n

c

t

i

o

n

1

:

A

P

I

c

a

l

l

2

:

r

e

q

u

e

s

t

V

a

l

i

d

i

t

y

(

O

A

u

t

h

2

.

0

t

o

k

e

n

)

3

:

r

e

s

p

o

n

s

e

V

a

l

i

d

i

t

y

4

:

A

P

I

c

a

l

l

r

e

s

p

o

n

s

e

Figure 6.8.2-1:Validation of OAuth 2.0 token

All messages containing a tokens shall be protected using TLS. The API invoker shall authenticate the API exposing function by verifying the API exposing function's certificate. The API exposing function shall authenticate the authorization function by validating the authorization function's certificate

Note: contents of the certificates and which CAs are acceptable are not defined in this solution.

The oAuth access token shall contain:

-
a unique random string,

-
which API the token applies to (the scope),

-
who is the resource owner,

-
the API invoker ID, and

-
expiry time.

Note: how that information is encoded in the OAuth access token is for stage 3.

1.
The API call shall contain the OAuth access token.

2.
The API exposing function shall verify that the access token is applicable to the desired API call and if yes, send the access token to the authorization function for validation. Otherwise the API call shall fail and a new authorization may be requested.

3.
The authorization function shall verify the validity of the access token and return whether the token is valid.

4.
If the access token is valid, the API exposing function shall execute the API call.

The API exposing function may cache the result of validation. In that case, the API exposing function shall subscribe to receive a notification in case the token is revoked. This subscription may be included in step 2, e.g. by accessing a different endpoint for validate and subscribe than for validate only.

The authorization function shall offer a notification service to inform the API exposing function of revocation of a token. Subscription shall be on a per token basis.

The authorization function may store information about validity of tokens locally.

Note: whether caching is required has not been studied in the present document.
6.8.3
Evaluation

This solution addresses Authz-4-Scope and Authz-5-Revoke. This solution deviates from the existing CAPIF solution in clause 6.5.2.3 in TS 33.122 [5]. It can avoid the impact of signature generation and verification and of relying on synchronized time and short lived tokens at the expense of backend communication between AEF and authorization function.
Determining the benefits of token introspection over signature verification will need to be done in deployment can be revisited at a later time.

++++++++++++++++ Next changes ++++++++++++++

6.9.3
Evaluation

Benefits:

-
In this solution, authorization code grant type of OAuth 2.0 is employed to authorize both the request for both the resources (KI#2) and the request for services/service operations (KI#1).

Impacts:

-
The CAPIF core function/authorization function should be able to generate tokens containing authorization information with resource owner identity (e.g. GPSI, IMSI), and user resource identifier (e.g. location).

++++++++++++++++ Next changes ++++++++++++++

6.10.3
Evaluation

Benefits:

-
This solution can authorize API invoker for both resources (KI#2) and services/service operations (KI#1).

-
The CAPIF core function/authorization function can authorize the API invoker based on policies provided by the resource owner.

-
Before offering the token to the API invoker, the identity of the API invoker is authenticated by the CAPIF core function/authorization function using the certificate or shared key related to AKMA/GBA/API invoker onboarding procedure.

Impacts:

-
This solution requires the resource owner to configure policies to the CAPIF core function/authorization function.

-
To authorize the API invoker, CAPIF core function function/authorization function may need to translate the application level policies (e.g. human-readable policies) to 3GPP level service/service operation identifiers.

++++++++++++++++ Next changes ++++++++++++++

6.11.2.2
Procedure
Pre-requisite:

1.
During the primary authentication, AUSF receives SNAAPPY Indication from UDM, which indicates that the AUSF and the UE need to generate the following pre-requisite 2.

2.
After the primary authentication, UE and AUSF generate SNAAPPY Key Identifier (S-KID) and KSNAAPPY from KAUSF as detailed in 6.11.2.3 and 6.11.2.4 of the present document, respectively. After the S-KID and KSNAAPPY are generated, AUSF sends the KSNAAPPY, S-KID, and SUPI to Authorization Function. The Authorization Function stores this information sent by the AUSF. If there were KSNAAPPY and S-KID corresponding to the same SUPI, they are overridden by the new KSNAAPPY and S-KID.

 [image: image3.emf]API InvokerCAPIF core function1. Onboarding procedure and mutual authenticationUEAPI exposing functionAuthorization Function2. Authentication and authorization 5. Generate TokenSNAAPPY.7. TokenSNAAPPY response 8. API invocation request(TokenSNAAPPY)9. Verify the TokenSNAAPPY.10. API invocation responseResource owner4. If an API invocation needs resource owner's authorization, the API Invoker obtains an authorization code via OAuth 2.0 authorization code grant. 6. TokenSNAAPPY request(Authorization Code)12. Revocation request11. Decide to revoke the authorization.13. Revocation request14a. Revocation response(Revocation time)15. Revocation response(Revocation time)14b. Revocation notification(Revocation time)3. Need an authorization from the resource owner for a service API.

Figure 6.11.2.2-1: Procedure for resource owner authorization based API invocation

1.
After API Invoker performs onboarding procedure to CAPIF core function as specified in clause 6.1 of TS 33.122 [5], the API Invoker mutually authenticates with the CAPIF core function as specified in clause 6.3 of TS 33.122 [5].

2.
API Invoker performs mutual authentication with API exposing function and gets an authorization to invoke a service API using one of three methods specified in clause 6.5 of TS 33.122 [5].

3.
For a service API which needs a resource owner's authorization, the API Invoker shall get an authorization from the resource owner in addition to the authorization that was obtained in step 2.

4.
The API Invoker obtains Authorization Code via OAuth 2.0 Authorization Code Grant as specified in RFC 6749 [4]. While the API Invoker redirects the UE to the Authorization Function, the API Invoker includes requested scope (e.g. modify QoS, location etc.) and the UE sends a challenge_UE, S-KID, and SNAAPPY indicator, which indicates that the UE supports the resource owner authentication with KSNAAPPY, to the Authorization Function. If the Authorization Function decides to authenticate the resource owner using KSNAAPPY, the Authorization Function generates authentication material (e.g. MAC generated using the challenge_UE and KSNAAPPY which the Authorization Function can find based on the S-KID), and sends a challenge_AF and the authentication material to the UE. After UE verifies the authentication material the Authorization Function sent, UE responds with authentication material (e.g. MAC generated using the challenge_AF and KSNAAPPY). The Authorization Function verifies the authentication material using KSNAAPPY. In addition to the authentication, the Authorization Function obtains authorization from the resource owner by showing the requested scope that the API Invoker sent and API Invoker information (e.g. API Invoker identity) before sending Authorization Code to the API Invoker.

NOTE 1:
Although the Authorization Function is illustrated as a separate entity from CAPIF core function in Figure 6.11.2.2-1, it may be deployed within the CAPIF core function according to the decision in SA3.

NOTE 2: Other authentication method between the resource owner and the Authorization Function can be additionally performed before the Authorization Function obtains authorization from the resource owner.

Note: Which entity in the UE executes step 4 is not specified in the present document.
1.
The Authorization Function generates an OAuth 2.0 token, TokenSNAAPPY. The TokenSNAAPPY conveys the S-KID or GPSI which is not MSISDN and the generated time of the TokenSNAAPPY, in addition to the token claims specified in Annex C.2.2 of TS 33.122 [5].

2.
The API Invoker requests the TokenSNAAPPY from the Authorization Function by presenting the Authorization Code sent by the Authorization Function in step 4.

3.
The Authorization Function sends the TokenSNAAPPY to the API Invoker.

4.
The API Invoker performs the service API invocation by presenting the TokenSNAAPPY.

5.
API exposing function checks whether the API Invoker is authorized to invoke the service API based on the selected authorization method in step 2. If the API Invoker requested a service API that needs resource owner's authorization, API exposing function shall check whether the API Invoker presented a TokenSNAAPPY. If the API Invoker performed the service API invocation without TokenSNAAPPY in step 8, the API exposing function shall reject the request. If the verification of the TokenSNAAPPY is successful, API exposing function identifies the UE using the S-KID or GPSI which is included in the TokenSNAAPPY, possibly by communicating with the Authorization Function that stored the S-KID and SUPI.

6.
API Invoker receives the service API invocation response from the API exposing function.

7.
If the resource owner does not want for the API Invoker to invoke the service API, the resource owner can revoke the TokenSNAAPPY at anytime even before the validity time of the TokenSNAAPPY.

8.
The UE requests the API Invoker to revoke the TokenSNAAPPY for the service API. This step is performed when e.g. the resource owner uninstalls the application on the UE or logouts from the application as described in RFC 7009 [7], or the resource owner clicks a revocation button on the application.

9.
The API Invoker requests the Authorization Function to revoke the TokenSNAAPPY for the service API as specified in RFC 7009 [7].

10.
If the Authorization Function receives a revocation request for TokenSNAAPPY,

a)
The Authorization Function responds to the revocation request. The response includes revocation time and the TokenSNAAPPY with MAC which the Authorization Function generates using the TokenSNAAPPY, revocation time, and KSNAAPPY; and

b)
The Authorization Function notifies the API exposing function of the revocation of the TokenSNAAPPY, with the revocation time. After the API exposing function receives the revocation notification of the TokenSNAAPPY, the API exposing function shall reject the API invocation from the API Invoker if the API Invoker invokes the service API with TokenSNAAPPY of which the generated time is prior to the revocation time.

11.
 The UE verifies the MAC using KSNAAPPY. The UE may inform the resource owner of the revocation result based on the verification.

6.11.2.3
S-KID
S-KID is in NAI format as specified in clause 2.2 of IETF RFC 7542 [11], i.e. username@realm. The username part includes SNAAPPY Temporary UE Identifier (S-TID), and the realm part includes Home Network Identifier or Authorization Function Address.

When deriving S-TID from KAUSF, the following parameters shall be used to form the input S to the KDF:

-
FC = 0xXX;

-
P0 = "S-TID";

-
L0 = length of "S-TID";

-
P1 = SUPI;

-
L1 = length of SUPI.

The input key KEY shall be KAUSF.

NOTE:
FC value to be determined during normative phase.

6.11.2.4
KSNAAPPY derivation function
When deriving KSNAAPPY from KAUSF, the following parameters shall be used to form the input S to the KDF:

-
FC = 0xYY;

-
P0 = "Authorization";

-
L0 = length of "Authorization";

The input key KEY shall be the KAUSF.

NOTE:
FC value to be determined during normative phase.

6.11.3
Evaluation

This solution addresses KI#2.

This solution uses OAuth 2.0 Authorization Code Grant model where mutual authentication between UE and Authorization Function is performed using the key derived from 3GPP credential after API Invoker redirects the UE to the Authorization Function.

This solution introduces a new mechanism for the revocation check of OAuth 2.0 token by including the token generation time in the OAuth 2.0 token and sending the token revocation time from Authorization Function to API exposing function.

This solution prevents the API Invoker from acting like the token, which the resource owner requested to revoke, is revoked by sending the revoked token with MAC, which is generated using KSNAAPPY, from Authorization Function to the UE via API Invoker.

This solution requires access to the 5G key hierarchy and will only work with a 5G authenticated UE.

Impact on AUSF exists, i.e. AUSF generates a new key (KSNAAPPY) with corresponding identifier (S-KID) and sends them to Authorization Function.
The resource owner can't enforce a malicious API invoker to actually revoke a token.

++++++++++++++++ Next changes ++++++++++++++

6.12.2
Solution details

6.12.2.1
Architecture
 EMBED Visio.Drawing.11
[image: image4.emf]API invokerCAPIF-1eCAPIF core functionAPI exposing functionService APIsService APIsService APIsCAPIF-3CAPIF-2eAPI invokerCAPIF-1CAPIF-2PLMN Trust DomainCAPIF-4API publishing functionAPI provider domainCAPIF APIsCAPIF-5API management functionResource owner client(s)CAPIF-8Authorization functionCAPIF-9CAPIF-10CAPIF-10eAuthorization APIs

Figure 6.12.2.1-1: Architecture for CAPIF with SNA enhancement

This solution uses an architecture proposed in solution #2 of TR 23.700-95 [3]. As defined in TR 23.700-95 [3], the Resource owner client is an application client used by end-user or subscriber of the API provider domain's service provider.

6.12.2.2
Procedure
Pre-requisite:

-
During the primary authentication, AUSF receives Routing Indicator for Authorization Function from UDM.
-
After the primary authentication, UE and AUSF generate S-KID (SNAAPPY Key Identifier) and KAuz from KAUSF as detailed in clauses 6.12.2.3 and 6.12.2.4 of the present document, respectively. After the key material is generated, AUSF selects the Authorization Function based on the Routing Indicator and sends the KAuz, S-KID, and SUPI to the Authorization Function. The Authorization Function stores the latest information sent by the AUSF.
-
Information on Authorization Function (e.g. address, Routing Indicator, etc.) which holds the KAuz is provisioned to the UE (e.g. during registration procedure).

-
API Invoker knows which APIs require a resource owner's authorization.

[image: image5.emf]API InvokerAPI exposing function5. Service API invocation request(Token_Auz)1. Need Token_Auz for service API invocation.10. Service API invocation responseUE2. Resource owner authorization request for the API invocation(Service API name, API Invoker Information)3. Generate a token (Token_Auz) using K_Auz for authorization on API invocation.4. Resource owner authorization response(Token_Auz)7. Verify Token_Auz using K_Auz.Authorization Function12. Revocation Request using resource owner client via CAPIF-8(Token_Rev)14. Revocation Notification(Token_Rev, UE ID)16. Revocation Notification via CAPIF-2(Token_Rev)11. Generate a token (Token_Rev) using K_Auz to revoke the Token_Auz.13. Verify Token_Rev using K_Auz.6. Token verification request(Token_Auz)8. Token verification response(verification result, UE ID)15. Revoke Token_Auz.9. Store Token_Auz with UE ID.

Figure 6.12.2.2-1: Procedure for resource owner authorization based API invocation

1.
If API Invoker does not have TokenAuz for service API invocation which requires the resource owner's authorization, API Invoker needs to request resource owner's authorization for the API invocation even if the API invocation is authorized from API exposing function as defined in TS 33.122 [5].
2.
API Invoker requests resource owner's authorization for the API invocation. The request message includes Service API name (e.g. QoS API, location API, etc.) and API Invoker Information (e.g. API Invoker identity which is provided from CAPIF Core Function).

3.
When the resource owner decides to give an authorization on the Service API name to the API Invoker (e.g. using GUI), UE generates an authorization token (TokenAuz). The claims of the TokenAuz include service API name, S-KID (SNAAPPY Key Identifier), API Invoker Information, "Authorized", generated time, and validity time. TokenAuz contains the claims (TokenAuz, claim) and the verification information (TokenAuz, verify). Details of S-KID and the corresponding key KAuz are specified in 6.12.2.3 and 6.12.2.4 of the present document, respectively. TokenAuz, verify is generated as detailed in 6.12.2.5 by using the claims and the key KAuz.
Note: Which entity in the UE executes step 3 is not addressed in the present document.
4.
If the resource owner gives the authorization for the API invocation, UE responds with the TokenAuz. Upon receiving the response, the API Invoker stores the TokenAuz with UE ID (e.g. application layer ID or GPSI or SUPI). The API Invoker can use the TokenAuz for the API invocation until the TokenAuz is expired by an expiration time or revoked by the resource owner, even when there is no online connection between the API Invoker and the UE.

5.
API Invoker performs the service API invocation with the TokenAuz.

6.
API exposing function requests token verification to Authorization Function, via CAPIF-9 interface.

7.
Authorization Function finds KAuz matched to S-KID which is included in TokenAuz, claim and verifies the TokenAuz using KAuz.

8.
Authorization Function responds with the verification result and UE ID (SUPI or GPSI).

9.
If the verification result of the TokenAuz is successful, API exposing function stores the TokenAuz with UE ID (SUPI or GPSI). Until API exposing function receives a revocation notification for the service API invocation or the TokenAuz is expired by an expiration time, API exposing function uses the stored TokenAuz for authorizing the API Invoker without performing token verification request to Authorization Function.

10.
API Invoker receives the service API invocation response.

11.
If the resource owner does not want for the API Invoker to invoke the service API, the resource owner can revoke the TokenAuz anytime before the validity time of the TokenAuz by using resource owner client. When the resource owner decides to revoke the TokenAuz for the service API, UE generates a revocation token (TokenRev). The claims of TokenRev include service API name, A-KID, API Invoker information, "Not authorized", generated time. TokenRev contains the claims (TokenRev, claim) and the verification information (TokenRev, verify). TokenRev, verify is generated as detailed in clause 6.12.2.5 by using the claims and the key KAuz.

12.
UE and Authorization function perform mutual authentication based on TLS-PSK as specified in clause 6.5.2.1 in TS 33.122, where PSK can be derived from KAuz. The TokenRev is transmitted to Authorization Function via CAPIF-8 interface with revocation request message.

13.
Authorization Function finds KAuz by using S-KID which is included in the TokenRev, claim. Authorization Function verifies the TokenRev using KAuz.

14.
Authorization Function notifies the revocation on the API Invoker's service API invocation. The revocation notification includes the TokenRev and UE ID.

15.
For the same UE ID stored at step 9 and received at step 14, API exposing function finds the TokenAuz which has same service API name and API Invoker information as the TokenRev. If the generated time of the TokenAuz is prior to that of the TokenRev, API exposing function revokes the TokenAuz and stores the TokenRev. After this, if the API Invoker performs service API invocation using the revoked TokenAuz, API exposing function shall reject the API invocation request by noticing that the generation time in the TokenAuz is prior to the generation time in the TokenRev.

16.
API exposing function notifies the revocation of the token.

++++++++++++++++ Next changes ++++++++++++++

6.12.3
Evaluation

This solution addresses KI#2.

This solution uses similar mechanism as users of mobile phone giving a permission to application for access to resources such as phonebook, microphone, camera, etc. When the resource owner authorizes an API Invoker, UE uses KAuz, which the API Invoker cannot obtain, to generate an authorization token (TokenAuz) sends the token to API Invoker. After verifying the token that API Invoker presented, API exposing function responds to API invocation request from API Invoker.

This solution does not use OAuth 2.0 procedure.

This solution introduces a new mechanism for the revocation check of a token by including the token generation time in an authorization token and the token revocation time in a revocation token.

Impact on AUSF exists, i.e. AUSF generates a new key (KAUZ) with corresponding identifier (S-KID) and sends them to Authorization Function.
The solution requires the UE to be authenticated to a 5G core.

++++++++++++++++ Next changes ++++++++++++++

6.13.2
Solution details

The resource owner provisions policies to the CAPIF core function/authorization function via the UE.

The authentication and authorization to resource owner (i.e. the human who uses the UE) is left to implementation.

By reusing the authorization mechanism in clauses 6.5.2.1 and 6.5.2.2 of TS 33.122 [5], the AEF can obtain resource owner related policies from the CAPIF core function/authorization function and authorize the API invoker to request resources belonging to the owner.

6.13.3
Evaluation
This solution requires no additional specification.

This solution doesn't detail how the resource owner is authenticated

This solution doesn't detail how the resource owner provides authorization.

Authorization needs to be provided in advance of calling the API.
++++++++++++++++ Next changes ++++++++++++++

6.14.1
Introduction

This solution addresses the key issue #2 in terms of authorization revocation.

The CAPIF core function/authorization function reuses clause 8.23.4 of TS 23.222 [12] to complete the revocation procedure.

6.14.2
Solution details

It is assumed that the API invoker is an UE/AF in SNA scenarios.

[image: image6.emf]CAPIF core function/ authorization functionAPI ExposingFunctionAPI invoker2. Authorization revocation procedure1. It is assumed that the authorization is revoked.

Figure 6.14.2-1: User authorization revocation for API invocation procedure.

0.
The API invoker obtains the service API invocation authorization from the resource owner. Specifically, the resource indicates the location information, QoS information, etc. And the API invoker is an UE/AF.

1.
It is assumed that the authorization is revoked.

And the CAPIF core function/Authorization function contains the revocation information.

The revocation information includes the identity (e.g. GPSI, IMPI) of the API invoker, the identity (e.g. GPSI, IMPI) of the resource owner, the target resource identifier (e.g. location, QoS), and the target service API.

2.
The CAPIF core function/authorization function reuses the procedures in clause 8.23.4 of TS 23.222 [12] to complete the authorization revocation.

The CAPIF core function should send revocation information, which is received from the resource owner, to the AEF.

The AEF invalidates the authorization based on the revocation information.

++++++++++++++++ Next changes ++++++++++++++

6.15.3
Evaluation

This solution allows the AEF to ensure that persistent changes can be undone after authorization revocation. It partly addresses Authz-5-revoke.

++++++++++++++++ Next changes ++++++++++++++

6.16
Solution #16: Token Revocation using Short-lived Token
6.16.1
Introduction

This solution addresses the requirement Authz-5-Revoke in KI#2.

This solution proposes to use a short-lived token for an issued token. The authorization can be revoked automatically if an API invoker does not refresh the issued token. There is no impact on the AEF.

6.16.2
Solution details

[image: image7.emf]CCF (Authorization Function)1. Token Request3. Token Response(Access_token (short exp))2. Assign short expired timer for token based on Revocation requirementRO client/API invoker

Figure 6.16.2-1: Procedure of Revocation of OAuth Authorization

0. It is assumed that requirement for revocation is received in CCF.

1. The API Invoker sends the Token Request to the CCF to retrieve a token to access the discovered API.

2. The CCF issues a token with a short expiry time when receiving the requirement for revocation, e.g. 1 hour.

3. The CCF sends the Token Response to the API Invoker. The message includes the issued token. Once revocation is required by the resource owner, e.g. to log out, the API invoker stops refreshing the token, which will be revoked within the short expiry time.

6.16.3
Evaluation

This solution partially addresses the requirement Authz-5-Revoke in KI#2, i.e. using a short-lived token instead of revoking explicitly at any time.
The solution has impact on CCF/authorization function.

The authorization is revoked implicitly and has less impact for the network system, i.e. the solution has no impact on the AEF.
The solution doesn't detail how to revoke effects of previous API calls.

++++++++++++++++ Next changes ++++++++++++++

+++++++++++++++ End of changes ++++++++++++++

_1745658661.bin

_1745658663.vsd
�

�

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

_1745658660.bin

