3GPP TSG-SA3 Meeting #111 	S3-232863
Berlin, Germany, 22 -26 May 2023													(revision of S3-yyxxxx)

Source:	Ericsson
Title:	Resolving ENs in solution #6
Document for:	Approval
Agenda Item:	5.11
1	Decision/action requested
It is proposed to approve the pCR to TR 33.884.
2	References
[1]	3GPP TR 33.884: " Study on application enablement aspects for subscriber-aware northbound API access"
3	Rationale
This contribution resolves the following ENs by providing more clarification.
Editor's Note: Further details on how the solution can meet the near real time authorization is FFS.
Editor's Note: The impact of needing storage, and requirements for getting the authorization information into the storage are FFS.
Editor's Note: Further evaluation is FFS.
4	Detailed proposal
Approve the following changes to TR 33.884 [1].
*** Start of Change ***
[bookmark: _Toc134016712][bookmark: _Toc134081495][bookmark: _Toc134081602]6.6	Solution #6: Authorization before allowing access to resources
[bookmark: _Toc134016713][bookmark: _Toc134081496][bookmark: _Toc134081603]6.6.1	Introduction
This solution addresses the security requirement about authorization by the resource owner before allowing access to resources of the resource owner, which is detailed in key issue #2.
It is assumed that authorization information by the resource owner has been received and stored in the authorization server with a method out of the scope of this solution.
Also, the consideration whether the resource owner is the subscription user or the subscription owner is out of scope of this solution.
The MNO learns the authorization information from the subscription user or from the subscription owner and stores the authorization information, which is bound to the UE identifier, in the PLMN trusted domain. How the MNO authenticates the resource owner and learns the authorization information is out of scope of this solution.
This solution covers the case that the API invoker is the AF accessing to resources related to a UE or the API invoker is the application in the UE accessing to resources related to that UE.
How the AF maps the target username in the application layer into the UE identifier is out of scope of this solution. The authentication and authorization behind the AF-CAPIF interaction for the triggering UE and user is out of scope.
This solution assumes that the authorization server is co-located with the CAPIF Core Function (CCF). This solution does not specify the place where the authorization information is stored. The CCF may store the authorization information in an external storage, and in this case it is assumed that there is a secure channel between the CCF and the external storage.
The storage is used to store dynamic authorization information received, from the resource owner, using MNO specific methods. This storage can be co-located with the CCF/authorization server.
This solution works as follow for the use case #1 defined in Annex A of TR 23.700-95 [3]. When the user starts a gaming application, the gaming application can check whether there is already a permission for the QoS changes via the gaming server which assumes the API invoker role. If there is no permission and if the gaming application wants to offer a better quality, the gaming application may ask permission for QoS changes. If the user wants to have a better quality, the user can give permission using operator specific mechanisms which can be a web portal or a mobile application of the operator.
Regarding use case #2 in Annex A of TR 23.700-95 [3], this solution proposes alternative to the flow defined in [3] addressing the following issues in [3], namely if the flow in [3] is applied, the MNO will need to authenticate the mobile application instance running in the UE Y and will also need to ensure that the end user in the UE Y triggers the location tracking. However, the MNO cannot ensure the correctness of the information about the end user of UE Y. Therefore, it seems that the best way to realize this use case is to have the authorization mechanism in the application layer by the application server, which is out of 3GPP scope. Following this motivation, the solution proposes that the UE should only be able to access its own resources. After learning its own location, UE X can share the location information with UE Y directly or via the application server. How this sharing is realized is out of 3GPP scope.
Alternatively, use case #1 can be used to realize use case #2, as follows: The application server (AF) accesses the location information of UE X on behalf of UE Y; for this to happen the resource owner of UE X needs to authorize the application server to access UE X's location, and the end user of UE X needs to give permission in the application layer for sharing the location information with the user of UE Y.
Editor's Note: Further details on how the solution can meet the near real time authorization is FFS.
[bookmark: _Toc134016714][bookmark: _Toc134081497][bookmark: _Toc134081604]6.6.2	Solution details
Below describes the steps of the procedure for "authorization before allowing access to resources", which is shown in Figure 6.6.2-1.

Figure 6.6.2-1: Authorization before allowing access to resources
How the authentication is executed for the API invoker that runs in the UE is out of scope of this solution. In general, the solution does not focus on the authentication of the API invoker.
1. [bookmark: _MCCTEMPBM_CRPT26580020___1]The API invoker and the CCF execute authentication procedures and establish a secure channel as specified in TS 33.122 [5].
2. The API invoker request OAuth access token as specified in TS 33.122 [5].
3. The CCF verifies the request.
[bookmark: _MCCTEMPBM_CRPT26580021___2]Steps 4-6 is executed if resource owner authorization check is needed for the API invocation.
4. [bookmark: _MCCTEMPBM_CRPT26580022___1]The CCF may fetches resource owner authorization information from the storage. If the storage is co-located with CCF, there is no need to execute steps 4 and 5, or handling them can be left to implementation.
5. The storage sends the resource owner authorization information.
6. The CCF issues an access token that includes an indication for the resource owner authorization. The CCF sends the issued token to the API invoker.
7. The API invoker and API exposing function establish a secure channel.
8. The API invoker sends the token to the API Exposing Function.
9. The API Exposing Function verifies the token and checks the resource owner authorization information before allowing access to the resources related to the subscription.
10. The API Exposing Function returns the API invocation response to the API invoker.
For the UE originated API invocation case where an the application on the UE triggers the API invocation by the application in the operating system in the UE or directly invokes the API, this solution assumes that an authorization in the granularity of application level is executed by a mechanism, like allowing users in the mobile phones to control the permission of application to access resources such as microphone of the mobile phone, provided by the operating system, which is out of scope of this solution. To give the access control power to the MNO considering the permission from the user or subscriber, the MNO needs to retrieve the permission/authorization information from the subscriber or user and store it in the authorization server/storage with an out of scope mechanism. This solution applies to the specific case where the application is accessing to the resources of the UE on which the application is running. The case of accessing resource of other UEs by the UE is not covered in this solution.
If near real time authorization is needed for two scenarios (AF originated and UE originated API invocation), some application layer procedures which are out of 3GPP scope can be applied. The following gives an example for such procedures. For the AF originated API invocation, when there is a need for authorization from the user or subscriber, the AF informs the application client (e.g., gaming application) on the UE by sending MNO backend server endpoint information. The application client redirects the user to the MNO backend server so that the user configures authorization information using the MNO backend server and then continue to use the application (e.g., gaming application). The above procedures are executed to invoke the API. For the UE originated API invocation, if the application knows the MNO backend server endpoint information, the application can redirect the user to the MNO backend server system. If there is no such information, the application informs the user for such an authorization need and the user can use one of the alternatives to access the MNO backend server, for example, by using the web portal or mobile application of the MNO.
The following procedure, depicted in Figure 6.6.2-2, shows how revocation of authorization by the resource owner can be handled.

Figure 6.6.2-2: Revocation of resource owner authorization
1. [bookmark: _MCCTEMPBM_CRPT26580023___1]Resource owner authorization is revoked.
2. The CCF informs the AEF about the revocation by sending the revoked token identifier. (It is assumed that the AEF has subscribed to the CCF event exposure service).
3. The API invoker and AEF executes some authentication and establish a secure channel using TLS.
4. The API invoker sends the access token in the NB API call.
5. The AEF verifies the access token, checks the resource owner authorization. Since the resource owner authorization has been revoked, the AEF rejects the request.
6. The AEF sends the rejection response to the API invoker.
[bookmark: _Toc134081498][bookmark: _Toc134081605][bookmark: _Toc134016715]6.6.3	Evaluation
The solution addresses the following cases:
-	The AF accesses resources related to a UE
-	The application in the UE is accessing the resources related to that UE.
The solution assumes that there is a mechanism in the UE for authorization in the application-level granularity.
This solution is a future proof solution considering possible extension of the definition of resource owner to cover the subscribers in addition to the users.
This solution assumes that the API invoker application in the operating system of the UE is authenticated and authorized by a method out of scope.
This solution is very similar to the existing mechanism for the AF originated API invocation case where the AF is outside of the UE. In the existing mechanism, the CCF has the authorization information that indicates whether the AF is allowed to consume the service API. The enhancement in this solution is that the CCF also checks the authorization information that indicates whether the AF is allowed to access the resources of the UE.
Considering the legacy mechanisms, this solution introduces a new claim in the token to inform the AEF that the user authorization has been checked by the CCF.
This solution requires CCF to have storage capability to store resource owner authorization information. In the existing CAPIF mechanism, CCF has already storage capability for preconfiguration of authorization information. This solution proposes to use existing mechanism about storage. How the authorization information is received from and updated by the MNO backend system is out of scope of this solution.
Editor's Note: The impact of needing storage, and requirements for getting the authorization information into the storage are FFS.
Editor's Note: Further evaluation is FFS.

*** End of Change ***

Microsoft_Visio_2003-2010_Drawing1.vsd

image1.emf
API invokerCAPIF core function / authorization serverAPI exposing function1. CAPIF-1e Authentication and secure session establishment3. Verify access token request 2. OAuth 2.0 based access token request6. Respond with Oauth 2.0 Access Token that includes an indication for resource owner authorization Storage4. Retrieve resource owner authorization information5. Resource owner authorization information9. Verify access token and check the indication for resource owner authorization in the token8. Oauth 2.0 Access Token that includes an indication for resource owner authorization 10. API invocation response7. TLS connection established

Microsoft_Visio_2003-2010_Drawing.vsd

image2.emf
API invokerCAPIF core function / authorization serverAPI exposing functionStorage2. Notification about the revocation3. TLS connection established4. Invoke Northbound API with Oauth 2.0 Access Token5. Verify Access Token, authorization claims in token, and resource owner authorization information. Since resource owner authorization has been revoked, reject the API call request6. Rejection response1. Authorization is revoked.

