3GPP TSG-SA3 Meeting #104-e 	S3-212787
e-meeting, 16- 27 August 2021						

Source:	Apple
Title:	Address the EN in solution #28
Document for:	Approval
Agenda Item:	5.8
1	Decision/action requested
It is proposed to address the EN in solution#28 in MEC TR 33.839.
2	References
[1]	3GPP TS 23.558: "Architecture for enabling Edge Applications (EA)"
3	Rationale
This pCR proposes to address an EN in solution #28:
 “Editor’s Note: It is FFS how EEC ID is authenticated.”
In this contribution, it is assumed that EES already stores the list of all the authorized EEC IDs.
4	Detailed proposals
[bookmark: definitions][bookmark: clause4][bookmark: _Toc37790918][bookmark: _Toc42003867][bookmark: _Toc42176676][bookmark: _Hlk47268233]****START OF CHANGES ***
6. 28	Solution #28: Authentication between EEC and ECS based on AKMA
6.28.1	Introduction
This solution addressed key issue#2 Authentication and Authorization between EEC and ECS.
This solution proposes the authentication between EEC (Edge Enabler Client) and ECS (Edge Configuration Server) based on AKMA. To be more specific, it is proposed to use the KAKMA derived from the AKMA procedure as the trust root to perform the authentication between EEC and ECS.
It is assumed in this solution that ECS is located outside of the MNO’s network.
6.28.2	Solution details
6.28.2.1	Procedure
	
[image: Timeline

Description automatically generated]

[image: Timeline

Description automatically generated]
Figure-6.28.2.1-1. Authentication between the EEC and ECS based on AKMA
The authentication procedure details are as following:
Step 0: UE performs primary authentication with the network. Then KAUSF is shared between UE and AUSF in Home network.
Step 1.1: UE generates KAKMA and A-KID following AKMA procedure in TS 33.535 and stores them securely.
Step 1.2: AAnF generates KAKMA and A-KID following AKMA procedure in TS 33.535 and stores them securely.
Step 2: Every EEC in this UE fetches the KAKMA and generates Kedge from KAKMA and EEC ID.
	NOTE 1：In this way, there will be one KAKMA and multiple Kedge in every UE.
Step 3: Every EEC compute MACEEC using the Kedge and EEC ID.
Step 4: UE sends Application Registration request (EEC ID, MACEEC, A-KID) to ECS.
Step 5: ECS sends EECID verification request (EEC ID) to EES to check whether this EEC ID is authorized or not.
	NOTE 2: If the ECS has stored locally the list of all the authorized EEC IDs, it shall check locally.
Step 6: EES replied EECID verification response.
Step 75: ECS sends Authentication verification (EEC ID, MACEEC, A-KID) to AAnF for verification.
Step 86: AAnF retrieves KAKMA using A-KID and calculates Kedge using KAKMA and EEC ID, then verify MACEEC using the (Kedge and EEC ID).
Step 97: If AAnF verification success, then AAnF sends Authentication verification response(success) back to ECS, otherwise, AAnF sends Authentication verification response(fail) to ECS.
Step 108: Based on the verification results, ECS decides whether to accept or reject the authentication request, and sends Authentication Request accept/rejection to EEC in the UE.
	Editor’s Note: It is FFS how EEC ID is authenticated.
	Editor’s Note: It is FFS whether ECS could perform the authentication instead of AAnF.
6.28.2.2	Derivation of Kedge and Kedge ID
Kedge is generated using KDF defined in Annex B.2.0 of TS 33.220 [8]. When deriving a Kedge from KAKMA, the following parameters should be used to form the input S to the KDF:
-	FC = xxxx(to be allocated by 3GPP)
-	P0 = <SUPI>,
-	L0 = length of <SUPI>.
The input key KEY should be KAKMA.
6.28.2.3	Generation of MACEEC
When deriving MACEEC in the UE and AAnF, the following parameters should be used to form the input S to the SHA-256 hashing algorithm:
-	P0 = Kedge,
-	P1 = EEC ID,
The input S should be equal to the concatenation P0||P1 of the P0 and P1.
The MACEEC is identified with the 32 least significant bits of the output of the SHA-256 function.
[bookmark: _Toc72913463]6.28.3	Solution Evaluation
This solution requires AAnF to perform the verification of the MACEEC.
This solution applies to the case when there are multiple EECs in one UE.
	Editor’s Note: Further evaluation is FFS.

****END OF CHANGES ***
image1.png
‘ | AUSF | | UDM | | SMF | ‘ AANF | | NEF ‘ |EdgeConﬁgurationServer

‘UE

I
‘ 0. Prinfary authentication and establishment of Kqusr ‘

1.1. UE generates 1.2. AAnF generates
Kakma and A-KID. Kakma and A-KID.

2. Every EEC|fetches the
Kakva and generates Keage
from Kakwa and EEC ID

3. EEC compute MACeec
using the Keage and EEC ID.

4. Application Registratipn request (EEC ID, MACkec, A-KID)

5. Authentication verification
(EEC ID, MAGEec, A-KID)

6. AANF retrieves Kakua using

A-KID, and calculate Kedge and

then verify MACkgec using the
(Kedge and EEC ID).

7. Authenticat|on verification
response(sjiccess/fail)

8. Authentication Request accept/rejection

image2.png
UE | EEC

AUSF

UDM

SMF

AANnF

NEF Edge Configuration Server

0. Primary authentication and establishment of Kausr

1.1. UE generates Kakma
and A-KID.

2. Every EEC fetches the
Kakma and generates Kedge
from Kakma and EEC ID

3. EEC compute MACkeec

using the Kedge and EEC ID.

4. Application Re

1.2. AAnF generates
Kakma and A-KID.

pistration request (EEC ID, MAQEec, A-KID)

10.

Authentication R¢

Edge Configuration Server

5. EECID verification request

« 7. Authentication verificat|

(EEC ID, MACkec, A-KID

8. AANF retrieves Kakma using
A-KID, and calculate Kedge and
then verify MACeec using the
(Kedge and EEC |D)

tquest accept/rgjection

9. Authentication verificas

response(success/fail)

(EEC ID)
6. EECID verification

response(success/fail)

on

