

	
3GPP TSG-SA3 Meeting #101-e 	S3-203149
e-meeting, 9-20 November 2020			
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	33.501
	CR
	0990
	rev
	-
	Current version:
	16.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Assertions: partial protection of the message

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S3

	
	

	Work item code:
	5G_eSBA
	
	Date:
	2020-10-30

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Client credentials assertions (CCAs) were introduced in Rel-16 eSBA. Currently, no part of the message itself is protected.

	
	

	Summary of change:
	Describes how assertions can protect part of the message.

	
	

	Consequences if not approved:
	Assertions cannot protect part of the message.

	
	

	Clauses affected:
	13.3.8.1, 13.3.8.2, 13.3.8.3, Annex A.x (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc45275093][bookmark: _Toc45274506][bookmark: _Toc45028841]*** BEGIN CHANGES ***
[bookmark: _Toc51168351]13.3.8	Client credentials assertion based authentication
[bookmark: _Toc51168352]13.3.8.1	General
The Client credentials assertion (CCA) is a token signed by the NF Service Consumer. It enables the NF Service Consumer to authenticate towards the receiving end point (NRF, NF Service Producer) by including the signed token in a service request.
It includes the NF Service Consumer’s NF Instance ID that can be checked against the certificate by the NF Service Producer. The CCA includes a timestamp as basis for restriction of its lifetime.
CCAs are expected to be more short-lived than NRF generated access tokens. So, they can be used in deployments with requirements for tokens with shorter lifetime for NF-NF communication. There is a trade-off that when the lifetime of the CCA is too short, it requires the NF Service Consumer to generate a new CCA for every new service request.
The CCA cannot be used in the roaming case, as the NF Service Producer in the home PLMN will not be able to verify the signature of the NF Service Consumer in the visited PLMN unless cross-certification process is established between the two PLMNs through one of the mechanisms specified in TS 33.310.
CCA does not provide integrity protection on the full service request, but they can provide integrity protection of the HTTP body and the HTTP method. Neither does it provide a mechanism for the NF Service Consumer to authenticate the NF Service Producer.
In this clause, CCAs are described generally for both NF-NRF communication and NF-NF communication.
[bookmark: _Toc51168353]13.3.8.2	Client credentials assertion
CCAs shall be JSON Web Tokens as described in RFC 7519 [44] and are secured with digital signatures based on JSON Web Signature (JWS) as described in RFC 7515 [45].
The CCA shall include:
-	the NF instance ID of the NF Service Consumer (subject);
-	A timestamp (iat) and an expiration time (exp), and
-	The NF type of the expected audience (audience), i.e. the type "NRF", "NF Service Producer", or "NRF" and "NF Service Producer".
The Client credentials assertion may include:
-	a hash of the HTTP body and HTTP method as specified in Annex A.x.
The NF Service consumer shall digitally sign the generated CCA based on its private key as described in RFC 7515 [45]. The signed CCA shall include one of the following fields:
-	the X.509 URL (x5u) to refer to a resource for the X.509 public key certificate or certificate chain used for signing the client authentication assertion, or
-	the X.509 Certificate Chain (x5c) include the X.509 public key certificate or certificate chain used for signing the client authentication assertion.
[bookmark: _Toc51168354]13.3.8.3	Verification of Client credentials assertion
The verification of the CCA shall be performed by the receiving node, i.e., NRF or NF Service Producer in the following way:
· It validates the signature of the JWS as described in RFC 7515 [45].
· It validates the timestamp (iat) and/or the expiration time (exp) as specified in RFC 7519 [44].
If the receiving node is the NRF, the NRF validates the timestamp (iat) and the expiration time (exp).
If the receiving node is the NF Service Producer, the NF service Producer validates the expiration time and it may validate the timestamp.
· It checks that the audience claim in the the CCA matches its own type.
· It verifies that the NF instance ID of the NFc in the CCA matches the NF instance ID in the public key certificate used for signing the CCA.
· If the Client credentials assertion contains a hash of the HTTP body and HTTP method as specified in Annex A.x, the receiving node computes the hash of the HTTP body and HTTP method as specified in Annex A.x and validates that it is identical to the hash received in the Client credentials assertion.

*** NEXT CHANGES ***
[bookmark: _Toc45275142][bookmark: _Toc45274555][bookmark: _Toc45028890][bookmark: _Toc35533509][bookmark: _Toc35528748][bookmark: _Toc26875981][bookmark: _Toc19634913]A.x	Hash of HTTP body and HTTP method
This clause applies to Client credentials assertions as specified in clause 13.8.
For computation of the hash of the HTTP body and HTTP method for inclusion into the Client credentials assertion, the input S to the KDF is computed as follows.
-	P0 = HTTP body;
-	L0 = length of the HTTP body;
-	P1 = HTTP method;
[bookmark: _GoBack]-	L1 = length of HTTP method.
The input key KEY shall be equal to null.
*** END CHANGES ***

