SA WG2 Temporary Document

Page 1

SA WG2 Meeting S2#98
S2-132429
15 - 19 July 2013, Valencia, Spain
(revision of S2-13xxxx)
Source:
Telecom Italia
Title:
Solution DY for Network Controlled ProSe Discovery (Alt. 2)
Document for:
Approval
Agenda Item:
6.4
Work Item / Release:
ProSe / Rel-12
Abstract of the contribution: Proposes a new alternative that supports Network Controlled ProSe Discovery, where the separation between the identifiers and the semantics used at the application layer and the bit-streams transmitted over the air enables the operator to control and differentiate the offer to the 3rd party service providers and allows more flexible models for revenue sharing. Moreover, the use of the identifier Serv_User_ID in the transactions between the EPS and the 3rd party service platforms and in the Inter-PLMN discovery ensures confidentiality and privacy of the identities of the UE used in the EPS and of the Application user identity used in the Application layer.
1. Proposal
Include a new alternative in TR 23.703
NOTE: The solution alternative presented here is based on the architecture proposed in document S2-132427.
Start Changes
6.1.Y
Solution DY: Network Controlled ProSe Discovery (Alt. 2)
The solution presented in this sub-clause 6.1.Y is based on the same architecture of solution DX (section 6.1.X) and reuses some of the procedures defined therein: for this reason it will be described here only those procedures that are different, keeping a similar numbering of the paragraphs.
6.1.Y.5
ProSe_Code
The ProSe_Code is the bit-stream that is actually announced/monitored on the radio interface by a UE engaged in the ProSe discovery procedure.
Each ProSe_Code is composed of three parts:

i. A PLMN specific part, i.e. Mobile Country Code (MCC) and Mobile Network Code (MNC), and
ii. the ProSe_Server_ID of ProSe Server that has allocated the ProSe_Code, and
iii. a UE specific identifier (unique across the PLMN).

A ProSe_Code is allocated per UE, independently of the number of applications the UE has configured in ProSe Server for usage of ProSe services. More specifically, a ProSe_Code is allocated per each subset of applications configured to use a specific discovery range class. E.g. in case a UE has configured three applications using only two discovery range classes, the UE will be assigned two distinct ProSe_Codes.

A ProSe_Code may have an associated validity timer that runs both in ProSe Server and in the UE.

The ProSe Server removes a ProSe Code from the ProSe User Context upon expiry of the associated validity timer.
The EPS layer in the UE is authorized to announce a ProSe_Code until the associated validity timer expires; after that a new ProSe_Start_Discovery_Req shall be issued.
NOTE: Even if it happens that a misbehaving UE continues to broadcast a ProSe_Code even after the associated validity timer has expired, the ProSe Server will no longer be able to recognize that ProSe_Code, and therefore the ProSe service will not be provided.

A ProSe Server may decides at any time to reallocate one (or more) new ProSe_Code(s) to the UE.

Editor’s Note: Detailed procedures for ProSe_Code reallocation are FFS.
6.1.Y.6
ProSe Discovery procedures for 3rd party services (non-roaming)
Assumption: the 3rd applications running on the UE know their Serv_ID (configured in the applications by the 3rd party service providers).

6.1.Y.6.1
Start ProSe discovery procedure

[image: image1.emf]Application(s)MMEHSS

8. ProSe_Start_Discovery_Ack (command, list PLMNs)

11. ProSe_Start_Discovery_Ack (command, list PLMNs)

7. Allocates ProSe_Code(s)

and starts the associated

validity timer(s)

eNodeB

3. ProSe_Start_Discovery_Req (Serv_ID(s))

Serving

ProSeServer

1. Activate ProSe

discovery service

EPS layer

UE

2. Communicate Serv_ID(s) of the application

9. Provide radio resources to the UE / ProSe_Start_Discovery_Ack (command, list PLMNs)

3rd party

service platform

4. ProSe Authorization Req

5. ProSe Authorization Ack

6. ProSe_Start_Discovery_Req (Serv_ID(s), IMSI)

Starts announcing

and/or monitoring

10. Radio resource allocation for ProSe discovery

6.1.Y.6-1: Start ProSe discovery procedure
1. When the user wants to discover one or more buddies for a 3rd party service(s), he/she launches the corresponding application(s) on the UE and activates the ProSe Discovery service within the application(s).

2. Each application communicates its Serv_ID to the EPS layer in the UE.

3. Upon receiving the Serv_ID(s), the EPS layer in the UE sends a ProSe_Start_Discovery_Req NAS signalling to the MME, containing the Serv_ID(s).
NOTE 1: The UE may include in a single ProSe_Start_Discovery_Req message one or more Serv_ID(s), depending on the number of the requesting applications.
4. If the address of the Serving ProSe Server is not present in the MME MM context, the MME queries the HSS to check whether the user is authorized to the ProSe service. If the address of the Serving ProSe Server is present in the MME MM context step 5. is not executed.
 Editor’s Note: Authorization criteria are FFS.
5. If the user has subscribed the ProSe service and other authorization criteria are met, the HSS acknowledges the MME query sending back the address of the Serving ProSe Server where is stored the ProSe User Context of the user.

6. The MME adds the IMSI of the user to the ProSe_Start_Discovery_Req and forwards it to the Serving ProSe Server.

7. The Serving ProSe Server finds the correct ProSe User Context, using the IMSI as a keyword. If the UE is allowed to act as an "announcing UE" for some of the received Serv_ID(s) and if there are not any operational reasons that prevent providing the ProSe service, the ProSe Server identifies the discovery range class(es) corresponding to the Serv_ID(s) in the ProSe_Start_Discovery_Req:

a. allocates a ProSe_Code for each identified discovery range class, and

b. starts a validity timer associated to each allocated ProSe_Code, and

c. stores the allocated ProSe_Code(s) into the ProSe User Context, and

d. keeps track of each Serv_ID to which a ProSe_Code has been allocated for accounting reasons.

NOTE 2: A ProSe_Code for a certain discovery range class may be reused if already present in the ProSe User Context, because of a previous ProSe discovery request. When a ProSe_Code is reused the associated validity timer is reset.

8. The Serving ProSe Server sends a ProSe_Start_Discovery_Ack message to the MME. The ProSe_Start_Discovery_Ack message contains:

a. the command to start monitoring, if the UE is allowed to act as a "monitoring" UE, or

b. the command to start announcing one or more ProSe_Code(s), each of them associated with the indication of the discovery range class and the validity timer, if the UE is allowed to act as an "announcing UE", or

c. both.
If the user is authorized to the Inter-PLMN ProSe discovery, then a list of PLMNs that can be monitored in the registered PLMN is also included.
9. Upon receiving the ProSe_Start_Discovery_Ack message, the MME stores the address of the Serving ProSe Server in the MME MM context. Based on the commands contained in the ProSe_Start_Discovery_Ack message the MME sends an indication to the eNB to provide the UE with the radio resources for ProSe; the ProSe_Start_Discovery_Ack NAS message to be forwarded to the UE is also included.

10. The eNB sends the ProSe_Res message (with the indication of the radio resource to be used for ProSe) and the ProSe_Start_Discovery_Ack NAS message to the EPS layer in the UE.

Editor's Note: How to provide the UE with the radio resources for ProSe, i.e. whether the eNB explicitly allocates radio resources to that UE, or whether the radio resources can be indicated to the UEs by the eNB using a new SIB (perhaps an encrypted one with some key distribution mechanism), or whether other procedures are used will be defined in RAN WGs.

11. Based on the commands in the ProSe_Start_Discovery_Ack message, the EPS layer in the UE starts monitoring and/or announcing each received ProSe_Code, according to the corresponding discovery range class, until the associated validity timer expires. The EPS layer in the UE stores locally any received ProSe_Code(s).
6.1.Y.6.2
ProSe monitoring procedure

[image: image2.emf]Depending on the analisys of the ProSe_Code

Application(s)MME

Serving

ProSe Server

5. Analisys of the received

ProSe_Code(s)

1. ProSe_Discovery_Req (ProSe_Code(s))

Target

ProSeServer

EPS layer

UE

3rd party

service platform

7. ProSe_Eval_Ack

2. ProSe_Discovery_Req (ProSe_Code(s))

3. ProSe_Discovery_Req_Ack

4. ProSe_Discovery_Req_Ack

Target

ProSeServer

HPLMNPLMN2Application Layer

5-a-ii. ProSe_Query(Serv_ID, ProSe_Code)

5-a-ii. ProSe_Answer(Serv_ID, ProSe_Code, Serv_User_ID)

5-b. ProSe_Answer(Serv_ID, ProSe_Code, Serv_User_ID)

5-b. ProSe_Query(Serv_ID, ProSe_Code)

6. ProSe_Eval(discoverer: “username”, Serv_User_ID;

discoveree(s): Serv_User_ID1, … , Serv_User_IDi)

8. Succesful discovery reporting (buddy_1, …, buddy_n)

5-a-i. Check internal

data base

6.1.Y.6-2: ProSe monitoring UE (non-roaming case)

Assumption: the 3rd application is running on the UE as per step 1. in section 6.1.X.2.5.1
1. When EPS layer in the monitoring UE “listens” one or more ProSe_Code(s), it collects and sends them in a single ProSe_Discovery_Req NAS message to the MME.
NOTE: Independently of the number of applications running on the UE, and of the number of “listened” ProSe_Codes, the UE sends a single ProSe_Discovery_Req NAS message to the MME. The ProSe_Discovery_Req NAS message may be sent as soon one or more ProSe_Code(s) has been received, however a tradeoff between the quickness in recognizing proximity events of interest and the frequency of sending the ProSe_Discovery_Req NAS message may be found to reduce the burden of NAS signalling.
2. The MME forwards the ProSe_Discovery_Req message to the Serving ProSe Server (the address of the Serving ProSe Server is retrieved from the MME MM context), adding the IMSI of the user.
3. The Serving ProSe Server sends a ProSe_Discovery_Req_Ack to the MME.

4. The MME sends a ProSe_Discovery_Req_Ack to the UE.

5. The Serving ProSe Server identifies the ProSe User Context of the user (discoverer) using the IMSI, and analyzes each ProSe_Code in the ProSe_Discovery_Req:
a. if the PLMN specific part (MCC, MNC) of the ProSe_Code belongs to the same PLMN of the Serving ProSe Server, then the Serving ProSe Server looks at the ProSe_Server_ID to determine which ProSe Server has allocated that ProSe_Code:
i. if the ProSe_Server_ID belongs to the Serving ProSe Server, then the Serving ProSe Server
· identifies the ProSe User Context of the corresponding discoveree using the ProSe_Code as a keyword, and
· checks whether it contains an entry with the Serv_ID:
· if the check is successful the Serving ProSe Server retrieves the corresponding Serv_User_ID,
· else the Serving ProSe Server discards that ProSe_Code.
ii. if the ProSe_Server_ID belongs to a different ProSe Server (hereafter called Target ProSe Server), then the Serving ProSe Server sends to the Target ProSe Server a ProSe_Query(Serv_ID, ProSe_Code) message. The Target ProSe Server
· identifies the ProSe User Context of the corresponding discoveree using the ProSe_Code as a keyword, and

· checks whether it contains an entry with the Serv_ID:

· if the check is successful the Target ProSe Server retrieves the corresponding Serv_User_ID and sends back to the Serving ProSe Server the ProSe_Answer(Serv_ID, ProSe_Code, Serv_User_ID) message,
· else the Target ProSe Server sends back to the Serving ProSe Server the ProSe_Answer(Serv_ID, ProSe_Code, NONE) message.
b. if the PLMN specific part (MCC, MNC) of the ProSe_Code belongs to a PLMN different from that of the Serving ProSe Server, then the Serving ProSe Server sends to the Target ProSe Server a ProSe_Query(Serv_ID, ProSe_Code) message. The Target ProSe Server
· identifies the ProSe User Context of the corresponding discoveree using the ProSe_Code as a keyword, and

· checks whether it contains an entry with the Serv_ID:

· if the check is successful the Target ProSe Server retrieves the corresponding Serv_User_ID and sends back to the Serving ProSe Server the ProSe_Answer(Serv_ID, ProSe_Code, Serv_User_ID) message,
· else the Target ProSe Server sends back to the Serving ProSe Server the ProSe_Answer(Serv_ID, ProSe_Code, NONE) message.
6. The Serving ProSe Server collects all the Serv_User_ID(s), if any, corresponding to the ProSe_Code(s) received in the ProSe_Discovery_Req and sends a ProSe_Eval message to the 3rd party service platform across the PC2 reference point, containing:

a. the (“username”, Serv_User_ID) of the discoverer, and

b. the (Serv_User_ID1, Serv_User_ID2 , … , Serv_User_IDi) of the discoveree(s).

7. The 3rd party service platform acknowledges the Serving ProSe Server with a ProSe_Eval_Ack message.
8. The 3rd party service platform checks possible matches according the discovery criteria configured by the users (e.g., who can discover me, who I want discover, etc.). If one or more matches are found the 3rd party service platform reports the successful discovery results within the corresponding application running on the UE of the discoverer.
6.1.Y.11
Solution Evaluation
The solution requires less signalling on the discovery channel compared to proposals requiring one discovery bit-stream per each application; in fact in this solution each UE will announce a number of bit-streams equal to number of the discovery range classes that accommodates all the applications that are using the ProSe service, regardless of the number of applications.
Moreover, the solution ensures a continuous network control over ProSe discovery, so that for any ProSe discovery event the operator can enforce:
· the revocation of the ProSe discovery authorization to the users (both discoverer and discoveree) even for misbehaving UEs, just interrupting the elaboration of the monitored ProSe_Codes at the Serving ProSe Server and thus stopping the ProSe service for those users;
· the Lawful Interception e.g. of the discovery proximity results, which are made available to the UE via SGi interface, whilst in other solutions are made directly available to UEs without possibility of intercept;
The solution gives the operator the guarantee that only authorized applications can use ProSe services, as every ProSe discovery request generated by an application/UE is processed by the network only if it is related an application that the operator has allowed.
The separation between the identifiers and the semantics used at the application layer and the bit-streams transmitted over the air enables the operator to control and differentiate the offer to the 3rd party service providers and allows more flexible models for revenue sharing.

The use of the identifier Serv_User_ID in the transactions between the EPS and the 3rd party service platforms and in the Inter-PLMN discovery ensures confidentiality and privacy of the identities of the UE used in the EPS and of the Application user identity used in the Application layer.

Editor’s Note: To be completed

End of Changes
3GPP

SA WG2 TD

_1434306749.vsd
Application(s)

MME

HSS

8. ProSe_Start_Discovery_Ack (command, list PLMNs)

11. ProSe_Start_Discovery_Ack (command, list PLMNs)

7. Allocates ProSe_Code(s) and starts the associated validity timer(s)

eNodeB

3. ProSe_Start_Discovery_Req (Serv_ID(s))

Serving
ProSe Server

1. Activate ProSe discovery service

10. Radio resource allocation for ProSe discovery

EPS layer

UE

2. Communicate Serv_ID(s) of the application

9. Provide radio resources to the UE / ProSe_Start_Discovery_Ack (command, list PLMNs)

3rd party
service platform

4. ProSe Authorization Req

5. ProSe Authorization Ack

6. ProSe_Start_Discovery_Req (Serv_ID(s), IMSI)

Starts announcing and/or monitoring

_1434363348.vsd
Application(s)

MME

Serving
ProSe Server

5. Analisys of the received ProSe_Code(s)

1. ProSe_Discovery_Req (ProSe_Code(s))

Target
ProSe Server

EPS layer

UE

3rd party
service platform

7. ProSe_Eval_Ack

2. ProSe_Discovery_Req (ProSe_Code(s))

3. ProSe_Discovery_Req_Ack

4. ProSe_Discovery_Req_Ack

Target
ProSe Server

HPLMN

PLMN2

Application Layer

5-a-ii. ProSe_Query(Serv_ID, ProSe_Code)

5-a-ii. ProSe_Answer(Serv_ID, ProSe_Code, Serv_User_ID)

5-b. ProSe_Answer(Serv_ID, ProSe_Code, Serv_User_ID)

5-b. ProSe_Query(Serv_ID, ProSe_Code)

6. ProSe_Eval(discoverer: “username”, Serv_User_ID; discoveree(s): Serv_User_ID1, … , Serv_User_IDi)

8. Succesful discovery reporting (buddy_1, …, buddy_n)

Depending on the analisys of the ProSe_Code

5-a-i. Check internal data base

