[image: image1.png]GSsMmA.

GSM Association
Non Confidential
Application Network Efficiency

[image: image7.emf]Push Client

…

Service

Provider

Push Server

To-be

Smartphone Push Notification Service Problem Statement & Requirements for Signalling Minimisation
Version 1.0
July 5, 2012
This is a Non Binding Permanent Reference Document of the GSMA

.

	Security Classification – NON CONFIDENTIAL GSMA MATERIAL

Copyright Notice
Copyright © 2012 GSM Association

Antitrust Notice

The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy.

1 Introduction
1.1 Introduction
This document covers the problem statement regarding application signaling and the functional requirements for Push Notification Service to alleviate application signaling load in Public Land Mobile Networks (PLMNs).
The functional requirements described in this document will be used as an input to standard-developing organizations (SDOs) for deploying unified and harmonized Push Notification Services across different mobile networks and device platforms.

1.2 Scope
The present document contains the results of the GSMA study of the Push Notification Services and concludes with a way forward.
The objective is to describe:

· Definition of the problem

· Requirements for the Push Notification Service architecture, which require a degree of joint and aligned industry action

· To identify requirements for APIs for push notification service that allow deployment independent of client types and that integrate as seamlessly as possible to maximize chance that developers use them.
The description of the target 'ecosystem' and strategies including the descriptions on the role of stakeholders (i.e. PLMN, application developers, OS vendors, device manufacturers, etc) will be addressed in a separate document.

1.3 Definition of Terms
	Term
	Description

	AAA
	Authentication Authorization and Accounting

	App

/ Application
	Software running on a subscriber’s device.

	App Server

/ Application Server
	A server of the app service provider or developer that provides the service and data for their apps.

	App User
	A subscriber of a network operator who has signed up an application service.

	Application ID
	An unique identifier to be used by the Push Notification Service to represent specific application.

	Client ID
	An unique identifier to be used by the Push Notification Service to represent the user and the application.

	DDoS
	Distributed Denial of Service

	IM
	Instant Messenger

	IMEI
	International Mobile Equipment Identity

	IMEISV
	IMEI Software Version

	IMPU
	IMS Public User Identity

	IMPI
	IMS Private User Identity

	IMSI
	International Mobile Subscriber Identity

	NMS
	Network Management System

	PDN
	Packet Data Network

	OS Vendor Push Server
	A Push Server provided by non-PLMN service providers e.g. Google C2DM, Apple APNS

	PDN Connection
	See 3GPP TS23.401

For 2G/3G access, PDN Connection means PDP Context (See 3GPP TS23.060)

	PLMN
	Public Land Mobile Network

	Push Client
	The software that runs on the subscriber’s device bridging Push Server and apps running on the device.

	Push Server

	The server that provides push notification service.

The server that provides push notification service, which is located in the HPLMN or located in the PDN

	Push Notification Service
	The service that is provided to deliver message data from app servers to the apps.

	Push System
	A system comprising the Application, App Server, Push Client and Push Server, that provides the Push Notification Service as described in this document

	RSS
	Really Simple Syndication

	SDO
	Standards Development Organisation

	SIM
	Subscriber Identification Module
It refers to an integrated circuit that securely stores the International Mobile Subscriber Identity (IMSI) and the related key used to identify and authenticate subscribers on mobile telephony devices. A SIM card contains its unique serial number (ICCID), international mobile subscriber identity (IMSI), security authentication and ciphering information, temporary information related to the local network, a list of the services the user has access to.

	SIP
	Session Initiation Protocol

	SMS
	Short Message Service

	SNS
	Social Network Service

	UICC
	Universal Integrated Circuit Card

It refers to the smart card used in mobile terminals in GSM and UMTS networks. The UICC ensures the integrity and security of all kinds of personal data. In a GSM network, the UICC contains a SIM application and in a UMTS network it is the USIM application.

	USIM
	Universal Subscriber Identification Module

2 Problem Statement
2.1 Background
The rapid proliferation of mobile data service has imposed a big burden to the network operators at the forefront of delivering services to customers. Mobile network operators (MNOs) worldwide have experienced an explosive increase of data traffic volume. Additionally the signaling load at the network level, growing independently of the data traffic volume, is one of the most serious problems. Several MNOs have experienced network outage or degraded performance due to the increased signaling traffic. Since the increased signaling load is visible to network operators mostly, service providers, end-users or application developers are insensitive to the problem. However, increased signaling load impacts smartphone users, experiencing rapid battery drainage, unresponsive user interface, slow network access or non-functional applications. As use of smartphone applications increases, so does the signaling load on a disproportionate scale.
Signaling traffic increases as mobile applications requiring real-time communications service like Instant Messenger (IM), Social Network Service (SNS), and mobile applications requiring periodic polling and updates like Email/Calendar, or Really Simple Syndication (RSS) feeds are widely used.
These applications often work with client and server model. The client receives data or updates from the server either by pull methods (e.g. client-driven long-polling) or by connection-oriented push methods (e.g. persistent connections with enabling server-initiated data delivery. With long-polling approaches, too short polling intervals incur unnecessary signaling traffic whereas too long polling intervals cause delayed response time. In connection-oriented push methods, the client establishes a persistent connection (e.g. via HTTP, a TCP-based protocol such as XMPP, or other proprietary TCP-based protocols), and either the client or server regularly sends signaling messages at the application or transport protocol layer, such as keep-alive (e.g. whitespace in XMPP
) to ensure always-on connectivity; keeping always-on connectivity helps immediate receiving of data or updates from the server. However, frequent transmission of signaling messages not only occupies the radio resources but increases the network processing load. Unlike iOS, which the use of OS Platform Push (APNS) is mandatory, this phenomenon is more prominent in Android smartphones in which each application can maintain its connection individually; the total amount of signaling messages grows rapidly as many applications are installed in users’ devices.

Furthermore signaling traffic impact the stability of mobile networks when it is combined with application server failure. If an application server is out of service unexpectedly, all the clients of the server lose their connections and may try to restore them. When the server is reinstated, reconnect messages from all the clients can cause network overload. Network failures arising from application server problems have been experienced by a number of network operators. Although the problem due to the application signaling traffic seems to be impact the stability of network and end users’ experiences due to the effect of a network or service outage caused by the network overload, there has been little public awareness of this. This is because the application signaling problem started to happen recently with the widespread use of smartphone applications and the problem is visible only to network operators or service providers.
Various smartphone platforms support proprietary push services (e.g. the Apple Push Notification Service (APNS)
 and Android Cloud to Device Messaging (C2DM)
), in addition to standardized push services (e.g. OMA Push). However, in order for the application to use these push services, the application must be pre-registered on the platform provider’s application distribution platform (e.g. 'market'), or for standardized push services through a MNO’s developer program. However, there are applications that are provided by MNOs, which may not be allowed on platform-specific markets due to e.g. contractual reasons. For these applications, MNOs may need to deploy their own Push service platforms. e.g. as with current deployments of OMA Push.
Moreover, it is commonly known
 that for these OS vendor push servers will still require the devices to perform keep-alive. This is due to the connection-oriented nature of the applicable protocols and that many such connections will be setup over mobile networks and network address translation (NAT) routers/firewalls, with dynamically assigned public IP addresses and configured limits on how long idle connections will retained over the network and NAT/firewall, and no ability of the push server to re-establish a dropped connection.
In addition, even if global IP addresses are assigned to the devices the operator will probably firewall-out any unsolicited traffic from the Internet to avoid network overload from “spam” mobile terminated traffic.
2.2 Problems to be addressed
The problems to be addressed include:

a) Discrete (per-application) persistent data connections for pushed data: As described in the previous sections, connection-oriented push services depend upon persistent TCP/IP connections, so that servers can send application data at any time. . For TCP-based protocols, the TCP stack layer can provide applications with connection persistence as described in IETF RFC1122. This TCP keep-alive is performed independently of the actual communication of application data. In other cases a push service may use TCP protocol-specific keep-alive messages initiated by its push server or push client (e.g. as in APNS and C2DM), or exchange data at the HTTP layer (e.g. as in W3C’s Server-Sent Events
 push protocol). When such persistent connections are established and maintained by each application, they can have significant impacts on network and device resources.
b) Lack of a globally/easily accessible framework and discovery mechanism for OMA-standardized push services: developer use of the more efficient (e.g. supporting connectionless push) and feature-rich OMA Push service enabler has been inhibited by the difficulty currently experienced by developers when trying to gain access to and use OMA Push services across multiple MNOs. While cross-MNO initiatives such as the Wholesale Application Community (WAC) have made progress in deployment of some OMA-standardized network APIs, the standardized API for OMA Push (PushREST
) has yet to be deployed under those initiatives. There is also missing solution addressing the scenario, where multiple push servers exist and user access and developer access are in different MNO networks.
c) Difficulty of developing cross-platform push-enabled applications in a fragmented market: while platform-specific push service frameworks continue to be developed, developers are faced with difficult choices for how to deploy their push-enabled applications across multiple device platforms, with a combination of proprietary and standardized push service support. While such fragmentation is inherent (at least prior to standardization), it is nonetheless an inhibiting factor in the wider adoption of push methods, as compared to application-specific or inefficient methods such as HTTP long polling.
The figure below illustrates the issues described by (b) and (c).

[image: image2.emf]Platform C Device

Platform B Device

MNO 2

Push Server

Platform A Device

OMA Push

Client

Native

App

Browser

Platform-

Specific Push

Client

App Server

Web

app

OMA Push /

SMS

Aggregator

SMS Stack

Platform-

Specific Push

Service

Aggregator

Developer

MNO 3

Push Server

MNO 1

Push Server

Platform B

Platform A

Platform C

Figure 2.2-1: The Current Situation
2.3 Proposed solutions
In order to alleviate the signaling problem described by (a) in the previous section, a solution is required to minimize these keep-alive messages by means of aggregation, as shown in Figure 1, or rather avoid the need of keep-alives (e.g. by placing the push server within the MNO network so that it can contact the device).

[image: image3]
Figure 2.3-1: Minimisation of keep-alive messages
This document focuses on the following problem space:
· In client-server model communication (e.g. applications running on smartphones), minimisation of uncontrolled, unnecessary and redundant application signaling such as TCP keep-alive.
To address the complexity of accessing push services in a multi-MNO environment as described by (b), this document focuses on the following capabilities for MNO-provided push services:
· Discovery of the access point that applies to a specific user

· Gaining access to MNO push services

· Configuring key push service parameters

· Using the push service at the server and application sides
To address the complexity of developing push-enabled applications in a fragmented market, this document focuses on the following capabilities:

· Discovery of the capabilities of the applicable/supported push services

· Consistent access to common capabilities of diverse push service frameworks

The figure below illustrates a conceptual overview of the resulting environment when (b) and (c) have been addressed:

 [image: image4.emf]Platform C Device

Platform B Device

MNO 2

Platform A Device

Native

App

Platform-Specific

Push Client

App

Server

Web

app

Push Service

Discovery

Function

(1)

SMS Stack

Developer

MNO 1

Platform B

Platform A

Platform C

Shared

MNO

Push

Server

(2)

(3)

(3) Developer

support libraries

(3)

(3)

Browser

MNO 3

MNO Push

Client

MNO 4

Push

Server

(4)

MNO 4

Figure 2.3-2: The Ideal Environment

In the above diagram:

(1) refers to the ability to discover the applicable/supported push service suitable for the application being used by a particular user on a specific device and the capabilities of that push service
(2) refers to a push service API which provides consistent access to common capabilities of diverse push service frameworks, as well as framework-specific capabilities as applicable

(3) refers to developer support through code libraries that enable application code running in clients and servers to use diverse push services, including the ability to use services directly or through shared push servers
refers to use of shared connections for multiple push-enabled applications running in Web browsers or as native applications

3 Architectural Requirements
The figure below illustrates possible Push Notification Service architecture and interfaces to be standardized in the Push Notification Service architecture.
Although the GSMA's aim is to achieve the ideal environment as illustrated in Figure 2.3-2, the scope to be addressed in this document, as the first step, is the Push Notification Service, including the push platforms to be deployed within the MNO domain.
[image: image5.emf]Platform C Device

Platform B Device

Platform A Device

Native

App

App

Server

Web

app

Push Service

Discovery

Function

(1)

SMS Stack

(2)

(3)

(3) Developer

support libraries

(3)

(3)

Browser

MNO Push

Client

MNO 4

Push Server

(4)

MNO 4

MNO 2

MNO 1

Shared

MNO Push

Server

MNO 3

(2)

Figure 3-1: Interfaces to be standardized
The following two scenarios will be supported as the first step:
· MNO deploys own Push Server
· (Optionally) Multiple MNOs share one Push Server
The architecture is expected to include the following logical elements:

Applications:
See the definition in Section 1.3.
Push Client:
See the definition in Section 1.3. In addition, the following points characterises the Push Client:

· the Push Client is provided in the layer above the 3GPP core network.
· The Push Client supports Push Server discovery function
Push Server:
See the definition in Section 1.3.
App Server:
See the definition in Section 1.3.
The items to be standardized include but are not limited as follows:

· Common Application Programming Interface between:
· Application server and Push Server; and

· Push Client and Application

· Interface between Push Server and Push Client
· Push message formats

· Push Service Discovery function
Note that the use of Push Server Discovery mechanism is optional, and whether new interface between the App Server and the Push Service Discovery function is required is to be investigated by the appropriate standardization organization.
4 Functional Requirements of Push Notification Service

4.1 General
It is required that the Push Client and Push Server will support:

· Standardized common API
· Standardized interface between the Push Client and the Push Server
The more detailed requirements for the API and the interface and other general requirements are described in the following subsections.
For the requirements of the scenario where multiple Push Servers exist, see section 4.1.3.

4.1.1 Application Programming Interface (API)
· Standard APIs: The Push Notification Service shall enable app developers to avoid developing different versions of apps for each operator and encourage app developers to use the Push Server API with less resistance.
· Easy-to-use API：The Push Notification Service shall provide easy to use API for developers on both client and server sides.

· Push Server API: The Push Server should provide a set of uniform push APIs that could be used by Application Servers regardless of the specific network operator to which service providers are interconnected

· Push Client API: The Push Client should provide a set of uniform push APIs regardless of the smartphone operating system. Standardized client API shall enable developers to minimize development to support both MNO push servers and OS vendor push servers
4.1.2 Push Client - Push Server Over-the-Air (OTA) Interface
· Deliver of simple notification only (including simple app data, reference): At minimum, the OTA interface should enable delivery of limited amounts of text or binary data (e.g. such as supported by OMA Push/SMS, C2DM, and APNS), through which simple notifications can be delivered. The objective should be in this case to enable the application to separately retrieve notification-data through a separate communication channel.
· Delivery of limited amounts of application data: The OTA interface should support delivery of limited amounts of arbitrary application data in text or binary form (e.g. such as supported by OMA Push/SMS, C2DM, and APNS). The objective should be to enable apps to take direct action on push messages, without the need for additional network transactions.

· Supported protocol: The Push Server and the Push Client should support at minimum one standardised protocol and bearer binding. The protocol to be selected needs to be efficient, enabling both connectionless operation and shared connection-oriented operation.
· IP Version: The interface between Push Client and Push Server should support both IPv6 and IPv4.
· Capability negotiation: Push Notification Service should provide a mechanism for a client device to determine optimal connection configuration (keep-alive, whether to choose SMS or not etc.) Push client and push server negotiates capabilities and preferences of its own through OTA (Over the Air) interface.

· SMS Push: The Push Server may offer Push Notification Services to the devices without PDN connection, by means of SMS.
· Minimization of keep-alive messages: The Push Notification Service must provide the means to minimize keep-alive messages sent from the device by means of aggregation, or by avoiding the need of keep-alives (e.g. by placing the push server within the MNO network so that it can contact the device). More details are provided in Section 4.2.
4.1.3 Push Service Discovery Function
When multiple Push Services exist (e.g. when multiple MNOs deploying their own MNO Push Server in each network, or when the shared MNO Push Server is used), the Push Server Discovery Function can be deployed. When the function is used, the following requirements should be fulfilled.

· Push Service Discovery (Server Side): The Push Notification Service shall enable application server to find the MNO Push Server to communicate, regardless of which MNO Push server instance is serving the user. The interface to App server shall be minimized to avoid app development complexity. The concept of virtual Shared MNO Push Server together with Push Service Discovery Function, as illustrated in Figure 3-1 can be considered as solution.
· Push Service Discovery Function: this function should provide applications to discover the applicable/supported push service(s) for the user, and the capabilities of the push service per the user’s device, device OS/platform, installed software, and serving MNO. The function should provide everything that the application will need to determine which API to use, when there are options, and the API access point.
· Push Service Discovery (Device Side): The Push Notification Service shall enable device to find the MNO Push Server to communicate, regardless of which MNO push server instance is serving the App server. The Push Notification Service should not require pre-configuration of the client (e.g. IP address of the Push Server). The cross MNO deployment shall not result in fragmentation of App distribution.
4.1.4 Other General Requirements

· Option not to deploy Push Server: The Push Notification Service shall allow MNOs to choose not to deploy Push Servers. Even if MNOs choose not to deploy Push Servers, the application developers should still have access to Push Notification Services.
· Reuse of existing standards: It is recommended to leverage existing standards to shorten time to market.
· Application Reachability: The Push Notification Service shall enable Application Server using Push Server to reach the corresponding application running on a device regardless of whether the application is running or not.
· Connection Management: Shall enable adaptable communication mechanism between the Push Server and Push Client depending on the policy (e.g. network status). Connection management should include the control of the connections. If no application using Push Notification Service is running on a device, the device shouldn’t maintain the connection with the Push Server.
· Dedicated notification channel: Shall separate notification and application level communication.

· Independent operation: Shall enable an operator to deploy and operate a Push Server independently from the other Push Servers. However, the interface between the Push Server-Push Client and the Push Server and app server should be standardized. One Push Client software may communicate more than one Push Server those are compliant with the standard,

· Minimal impact on customer’s billing: Shall minimize the traffic including Push message overhead generated by Push Notification Service protocol and minimize negative impact on customer’s billing. Our objective in standardizing Push Notification Service lies in minimizing redundant traffic especially in air interface and unnecessary call attempts and therefore our Push message should minimize overhead as much as possible.
· Consideration of roaming: Push Notification Service shall enable the Push Server to provide stable service to a subscriber even when the subscriber moved out of the home network of the operator. It is recommended that the Push Notification Service of the home network is seamlessly provided to the Push Client even when the Push Client device is out of the home network during roaming.

4.2 Overload Control

· Minimization of keep-alive messages: Push Notification Service should minimize the network impact caused by background applications such as keep-alive messages aggregation Ideally keep-alive messages should be made redundant (zero) by having a proper push architecture.
· Adaptive keep-alive: Push Notification Service should support adaptive keep-alive mechanism for optimizing keep-alive trigger period, unless the No Keep-alive (see below) mechanism is used.
· Exponential backoff: Push client should implement an exponential backoff mechanism when it tried to connect with Push server and failed due to Push server failure. This requirement is introduced due to DDoS-like keep-alive messages’ potential risk after app server or MNO network failure and restore. Details on how to implement exponential backoff is beyond the scope of standardization, but it should be stated that exponential backoff mechanism be utilized in order to keep DDoS-like keep-alive messages swarm from happening.
· No Keep-alive: Push Client should implement a mechanism to completely disable keep-alive (or infinite keep-alive trigger period).
· Push message control: The Push Server should be able to control push message delivery depending on the network conditions.

· Push Server load control: The Push Notification Service shall enable the Push Server to provide services in stable condition and prevent the Push Server from being overloaded, It is recommended that authenticating the Push Client at the provisioning time so as to check the access privilege and control the work load of the Push Server at the same time. When a Push Server is overloaded, the authentication may fail to guarantee stable operation of the Push Server even if the Push Client has a valid access privilege. If the authentication is failed, the Push Client may attempt to find to another Push Server on the basis of the Push Notification Service information and policy that are given from the operator or return fail to the application so that the application can establish a direct connection with the application server.
4.3 Application Status Management
· Application wake up: Push Notification Service shall enable application wake-up mechanism, which can activate an application through a notification from the Push Server on the basis of the policy saved in the Push Client so that push message can be properly delivered to the corresponding application even if the application is not running at that time. The policy can be provided by the MNO only when it is required or at the provisioning time.
· Application status: Push Notification Service may be able to manage different states of applications. Provided that the Push Server is operated by MNO, it could be useful for Push Server to sense whether an application is running or not on a handset because the Push Server can send different message depending on the application status. Some application implement dedicated keep-alive channel to get the application status in order to perform differentiated service to end user.
4.4 Guaranteed Push Notification Service
· Guaranteed Delivery of Push Notification: Push Notification Service should be able to support for guaranteed delivery of Push Notification as well as ordinary best effort delivery of Push Notification which does not guarantee delivery and does not require feedback or reply. Based on the contract between app service providers and MNOs, there is a need from app service providers to forward push messages reliably in contrast to ordinary push messages, which is by its nature best effort. Guaranteed push message should be defined in addition to the best effort push message such as message format, different message type, different options(AVP-attribute value pair)
· Charging & Billing: Push Notification Service should be able to support for charging and billing for example on guaranteed delivery Push Notification Service
· Feedback Notification: For guaranteed delivery push, feedback notification to the service providers should be supported. It is recommended that an API that enables app service providers can identify if a message has been delivered to the app or not.
4.5 Abnormal Cases
· Consideration of App Removal/Installation: Push Notification Service should handle the removal and reinstallation of applications. This requirement arises because the Push Client ID should be deleted when the application is uninstalled, that was sent to the Push Server to identify the Push Client. In addition, Push Client ID should be issued again when an application is reinstalled.
· Consideration of USIM/IMEI information change: Push Notification Service should support cases in which USIM or IMEI information is changed.
· Consideration of simultaneous multiple device usage: Push Notification Service should support a case where a user has same applications on simultaneous multiple devices and needs to receive push message on multiple devices. The system shall be capable to support the following modes:
· Push to all devices: Push Notification Service should support a means to push a notification to all devices belong to the same user.
· Push to a specific device: Push Notification Service should support a means to push a notification to only one specific device.
4.6 Privacy and Identity
· Privacy and identity: Push Notification Service shall NOT expose any end user identifiable data to Application and Application Server using the service. The end user identifiable data is the identifiers that are privately assigned to the user by the network. Example of such identifiers are Private IP address(es) being assigned to the device, IMSI, IMEI(SV), IMPU, IMPI and MSISDN.
· Data encryption: Push Notification Service shall guarantee the security of the data exchanged between the app server and app via Push Server.
· App Server authentication: Push Notification Service shall enable operators to authenticate the access privilege of the app server and enable app users to trust the messages from the App Server and sure that the messages are not forged.
· Push Client authentication: Push Notification Service must provide authentication mechanism between the Push Client and the Push Server.
4.7 Changes of Access Network
· Switching between 3G/LTE and Wi-Fi: Push System should support access network switching between 3G/LTE and Wi-Fi and support secure transfer of push messages over insecure Wi-Fi AP.
· Access Network Agnostic: It is the role of the Push Client and the Push Server to take care of the access network switching so that Application and Application Servers do not need to care about the access network being used.
· Push Server Discovery independent of Access Network: The Push Client must be able to discover the proper Push Server regardless of the current Access Network.
5.
Conclusion
This document presented GSMA requirements of the Push Notification Service. GSMA anticipates that the API between Application and the Push Client, the API between App Server and the Push Client, the service discovery mechanism in interworking scenarios, and the interface between the Push Client and the Push Server to be standardised based on the requirements presented in this document.

6.
References

 “Always-On/Notification Service and Update on OMA AOI Work Item” by China Unicom, GSMA ANEFF, May 2012

“Optimization and Overload Management Techniques for Smart Phone” White Paper, GSMA ANEFF, May 2012

“Assessment on OMA/SKT’s Push Services and Requirements” by SKT, GSMA ANEFF, 11 May, 2012

“Requirements on Standardization of Push Notification Service” by KT, GSMA EMC, 10 Feb 2012

� http://tools.ietf.org/html/rfc6120#section-4.6.1

� http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html

� https://developers.google.com/android/c2dm/

� http://www.youtube.com/watch?feature=player_profilepage&v=PLM4LajwDVc#t=854s

� http://www.w3.org/TR/eventsource/

� http://www.openmobilealliance.org/Technical/release_program/PushREST_v1_0.aspx

<V1.0>

Page 1 of 16

[image: image6.emf]Applications

in the

Smartphone

…

Service

Providers

Network

Provider

As-is

