3GPP TSG-SA2 Meeting #36
s2-034295
New York, USA, 24th – 28th November 2003
Source:
Bell Labs (sahuguet@lucent.com)
Title:
Discussion on GUP information model
Agenda item:
9.1
Document for:
Discussion
In this document we comment on the S2 document S2-034165.
1. Information model vs data model
the terms “data models” and “information models” are used in the document and it is not clear if there is a difference between both. This issue should be resolved.

2. Why we need “components”
The main reason for “components” is because we need to be able to partition the information contained in a user profile into pieces we can reason about. It is crucial to define the smallest (“indivisible”) information piece our model can deal with. A good analogy is a file system where we have files and folders. A file is the unit of storage of access control. A file cannot be stored part on driveA and part on driveB. The access control is the same for all the bytes of the file. Note that in the case of GUP, we need components to define things such as storage, access control and maybe billing, etc.
3. Physical model vs logical model
The key innovation of data management for the last 25 years has been “physical data independence”. This means that we can reason about data without having to worry about how it is physically stored. Database vendors (e.g. Oracle, IBM, Microsoft, etc.) all offer the same logical view offer data (relational model) but use different ways to store the data internally.
In the case of GUP, we should adopt the same strategy and worry about the logical view of the data and leave the details of the physical implementation to the implementers. From this point of view, Figure 2 does not make sense to me. Are we going after the Oracle, IBM and Microsoft of the world telling them how they should store GUP data? I don’t think so.
4. GUP Information model and XML
It has been agreed that GUP will use XML. What this means is that GUP will inherit the XML data model (see http://www.w3.org/XML/Datamodel.html).

”The data model for XML is very simple - or very abstract, depending on one's point of view. XML provides no more than a baseline on which more complex models can be built. All those more restricted applications will share some common invariants, however, and it is those that are given below.
Think of an XML document as a linearization of a tree structure. At every node in the tree there are several character strings. The tree structure and the character strings together form the information content of an XML document. Almost everything will follow naturally from that. Some of the characters in the document are only there to support the linearization, others are part of the information content.”

By nature, the XML data model is hierarchical. This means that the “parent-child” relationship implied by components is already built-in in the model. Why do we need to specify another one?
5. Revisiting the four options

Concretely, option 1 means that we keep the hierarchy implied by the XML data model and do not add anything.
For option 2,3,4, it is not clear what this implied at the level of XML. Here are some possible interpretations:

· we invent a meta language to describe the structure of a GUP user profile, where components and data items are explicitly expressed.

<gup>
<component><data-element-group><data-element/><data-element/></data-element-group/></component>
<component/>
</gup>

· we use an XML schema language (e.g. W3C XML Schemas) to describe GUP user profile. Components are defined implicitly by the nesting relationships between elements. Naming disciplines (e.g. namespace) can be used to make the definition more explicit.

· We use an XML schema language (e.g. W3C XML Schemas) to describe GUP user profile. Components are not defined as part of the schema but rather as part of an “adjunct schema”. We use XPath to identify components and data elements.

6. How this is done today
I have been looking at some GUP components (CAMEL example) that a member of the GUP working group was kind enough to provide to me. Here are the remarks I can make.
· Components are described using W3C XML Schemas

· Components are not explicitly defined. They are just comments in the schema itself.

· Every component must have some properties that include

· Private Identities - IMSI and IMPI

· Public Identities - e.g. MSISDN, IMPUs, names etc.

· Default access rights

· Default privacy control data

· Error data

· date and time

· service state

· Master copy indicator

· Synchronized copy indicator

· Working copy indicator
7. Danger: mixing data and metadata
The big problem with this approach is that data and metadata are mixed together. An immediate concern is the “privacy control” information. Privacy control will be enforced, per identity, per component and per requester (e.g. only my family can access my presence information). The current design does not make this possible.
Another problem is the fact that the component itself must be aware of itself. On a file system, a file usually does not know its own name; the operating system does. Similarly for the “master copy” indicator. If this information is stored in the component itself, how do we enforce consistency. This information should be managed by the GUP server itself.
Lucent’s recommendation

We recommend that:

· the four options be better explained especially in terms of how they will influence practically the design of the schema for the GUP profile
· in doubt, option 1 be chosen since components can always be captured using some “adjunct schemas” later on

· a “toy” GUP schema be implemented to validate the chosen approach. (see Lucent’s contribution CN4 031231 as a starting point).

· the issue of data vs metadata be resolved soon

The rest of the document is S2-034165

1. Introduction

Related to the Generic User Profile (GUP) work SA2#35 sent a LS to T2 and CN4 (S2-033812) with the title "Reply LS on Hierarchical Structure in GUP Specs". This was provided as a response to T2's LS, which identified a conflict between the TS 23.241 and TS 23.240 information models. The LS lists alternative solutions, but the conclusions were left for this SA2#36 meeting.

2.
Discussion

2.1
TS 23.240 data model

The following figure from TS 23.240 depicts the GUP information model as defined by SA2.

[image: image1.wmf]

1

0..*

0..*

1

1

1..*

1

0.. *

*

1

Generic User Profile

Identity

Data Element

GUP Component

Data Element group

Group type

Composite

Datatype

Figure 1. GUP information model (TS 23.240 v. 6.1.0).

One main principle in GUP work has been that the user profile consists of independently defined components. The figure contains also Data Element Group (DEG) and Data Element (DE) entities to describe in more detail the contents of a component. DE is an indivisible item of data and DEG is provided to hold hierarchical data structure of arbitrary depth.

The Rg reference point procedures may access the whole user profile whereas the Rp reference point procedures act upon a single component at a time (even though a single message may access sequentially many components).

2.2
TS 23.241 data model

[image: image2.wmf]Profile Component

Description

Component

Property

0..*

1

Datatype

Description

includes

Profile

Component

Component

Run

-

Time

Property

Payload

1

Profile

Profile

Description

1

..*

Profile Type

LOGICAL

PHYSICAL

Profile Component

Group Description

Profile Component

Group

1

1

1

1

1

1

1

0..*

0..*

0..*

1

0..*

1

1

..*

1

..*

1

..*

1

1

0..*

0..*

1

1

1

1

0..*

0..*

1

1

1

1

1

1

1

0..*

0..*

0..*

1

1

1

0..*

0..*

0..*

includes

includes

includes

includes

1

0..*

includes

includes

0..*

Figure 2. Profile High Level Structure and constituent parts (TS 23.241 v. 0.5.1).
The figure 2 shows both the logical and physical views on the data. Let us focus here on the lower part where it is shown how the profile may consist of Profile Component Group(s) (PCG) and/or Profile Component(s) (PC) with the actual data as "Payload".

2.3
Concise analysis of models

We conclude that:

· The DEG concept in TS 23.240 maps to the payload in TS 23.241. DEGs cannot be accessed specifically by Rg or Rp procedures in any different manner than the lowest level data elements.

· PCG is an additional concept to TS 23.240 data model.

Hence the question seems to be if PCG concept is needed in addition to GUP (or Profile) Component.

We realise that there are needs to have components that could be shared by many subscribers who have similar services. It is good that T2 has raised this issue into discussion. This is a way to optimise the amount of data transferred and stored per subscribers. However we see that the concept of GUP Component could be developed to support these kind of common components that are reused. This would mean stating that a GUP Component may contain references to (common) components.

The Rp reference point procedures could work in exactly the same way in case of subscriber related components or those of common nature. In the latter case the component identification would be a generic one instead of a subscriber identification.

A few drawbacks of having Profile Component Groups:

· In addition to the present description how the reference points behave in relation to components, the same things should be defined for PCGs.

· Unnecessary complexity. GUP Component and PCG are conceptually very close to each other. Profile could have very many kind of structures.

· Pretty large impact on TS 22.240, 23.240 and 29.240 because the change is on so high level in the data model.

3.
Proposal

The mentioned SA2 LS to T2 and CN4 (S2-033812) lists the following options:

1. Removing all hierarchical structure out of the Rel6 GUP information model.

2. Adopting the hierarchical structure based on DEGs for the Rel6 GUP information model.

3. Adopting the hierarchical structure based on PCGs for the Rel6 GUP information model.

4. Adopting a ‘compromise’ hierarchical structure, which combines the principles of DEGs and PCGs. One suggestion is to have the GUP Profile containing Components, and Components containing DEGs and/or Data Elements and additionally references to other Components.
We propose that the option 4 (see above) is selected. TS 23.240 should be changed so that a possibility that a component contains component references is added. We have submitted a companion CR in S2-034166 for this aim. Also it should be noted that generic components, not attached to any single subscriber may exist and be accessed by the same means as those components that are linked to a particular subscriber.

We kindly request SA2 to discuss this proposal in order to find a resolution to the GUP information model issue and to inform T2 and CN4 about the decision.

_1130238046.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

[image: image1.wmf]

1

0..*

0..*

1

1

1..*

1

0.. *

*

1

Generic User Profile

Identity

Data Element

GUP Component

Data Element group

Group type

Composite

Datatype

� EMBED Word.Picture.8 ���

[image: image2.wmf]

1

0..*

0..*

1

1

1..*

1

0.. *

*

1

Generic User Profile

Identity

Data Element

GUP Component

Data Element group

Group type

Composite

Datatype

_935227290.doc

_1110369579.doc

			

			DOCUMENTTYPE

			

			1 (1)

			

			

			

			

			TypeUnitOrDepartmentHere

			

			

			

			TypeYourNameHere

			TypeDateHere

			

			

Generic User Profile

Composite Datatype

0..*

1

*

1

Identity

GUP Component

1

1..*

1

0.. *

Data Element

Group type

Data Element group

0..*

1

_935227290.doc

_1127913813.ppt

Profile Component

Description

Component

Property

0..*

1

Datatype

Description

includes

Profile

Component

Component

Run-Time

Property

Payload

1

Profile

Profile Description

1..*

Profile Type

LOGICAL

PHYSICAL

Profile Component

 Group Description

Profile Component

 Group

1

1

1

1

1

1

1

0..*

0..*

0..*

1

0..*

1

1..*

1..*

1..*

1

1

0..*

0..*

1

1

1

1

0..*

0..*

1

1

1

1

1

1

1

0..*

0..*

0..*

1

1

1

0..*

0..*

0..*

includes

includes

includes

includes

1

0..*

includes

includes

0..*

