3GPP TSG-SA WG2 meeting #26

19 – 23 August, 2002

Toronto, Canada
Tdoc S2-022349




Source: 
Nokia

Title: 
Handling large data in presence

Agenda item:
9.1
Document for:
Discussion and Decision


Introduction

This contribution presents how Presence Servers can reduce the amount of data sent to terminals when presence servers are reporting changes in subscribed presence information. 

As currently specified in [3] and in [4], Presence Servers must always send complete presence state when they are reporting subscribed presence information to watcher applications. Common Presence and Instant Messaging model mandates this kind of behaviour. This behaviour results in a situation where PS is not allowed to send the modified data only.

Always sending the complete presence document from presence server to terminal will unnecessarily consume radio and terminal resources. The drawback is most severe if presence documents contain large data elements like pictures or sounds. The contribution proposes a mechanism, which can be used to eliminate the need to send data elements, which have not changed. The mechanism has to be supported by the terminal and by the PS and it contains two main functional elements:

a) All presence data elements (attributes) to which this mechanism can be applied need a unique identifier which can be used to identify presence element from the rest of the presence data elements. Tuple id can be used for this purpose but also some other applications specific identifiers can be used.

b)  PS must be able to generate version identifiers to these data elements where this mechanism is used. This version identifier will identify one incarnation of data element’s content and will remain same as long as the content of the data element does not change. When content of the data element (for example picture) changes then PS must generate new version identifier for changed data element. 

When this mechanism is used Presence Server will always send complete presence state i.e. presence documents send in notify request will contain all authorized/available presence attributes to one particular watcher. All presence elements/attributes where IMS operator wants to apply proposed mechanism are treated as described in Chapter 7.3

Proposal

It is proposed to add following parts to 23.141:
********************************** First set of changes ************************************************

5.1 Presence Server

The Presence Server resides in the presentity's home network.

The Presence Server shall manage presence information that is uploaded by the Presence User/Network/External agents, and is responsible for combining the presence-related information for a certain presentity from the information it receives from multiple sources into a single presence document. 

The mechanisms of combining the presence related information will be defined based on presence attributes, and according to certain policy defined in the Presence Server. The Presence Server is not required to interpret all information, the information that the Presence Server is not able to interpret shall be handled in a transparent manner.
The Presence Server shall also allow users to fetch and subscribe for receiving either the full set of presence information of a presentity, or only certain tuples within. The Presence Server shall be able to generate partial notifications to a watcher, these partial notifications only contain those tuples of the presentity which have been modified since the latest notification sent to the watcher about this presentity. 

The Presence Server shall support internetwork operability mechanisms to allow for an interoperable Presence Service across multiple operators' networks and domains (e.g. external Internet). Mechanisms for locating the Presence Server shall be developed, especially with respect to these internetwork operability aspects. 

The Presence Server shall support SIP-based communications with the Presentity Presence Proxy. In the IMS the Presence Server is seen as a SIP Application Server, and is located using SIP URLs, standard SIP and existing IMS mechanisms (SIP routing, HSS query, ISC filtering, etc…). 

The Presence Server shall support authorization and security mechanisms, at least the following levels of authorization are foreseen:

· Providing presence information to any Watcher application that requests it

· Provide presence information to only those Watcher applications in an “allowed” list

The Presence Server may also support authorization and security mechanisms that is based on asking permission from the Presence User agent on a case-by-case basis.

The Presence Server may support rate-limiting or filtering of the presence notifications based on local policy in order to minimize network load.

The Presence Server could be extended to a generic State Agent, supporting subscriptions and notifications regarding other types of events than presence as well. An example for such event is the combined presence of a whole buddy list.

The Presence Server shall support data versioning mechanism as presented in chapter 7.3.
********************************** Second set of changes ********************************************

7.3 
Required attributes to provide versioning functionality
Each data element may have a running version identifier. When the first notification which contains data element is send to client, version identifier must be present for that data element and it must be initialized to some value (e.g. zero). Version number is used as follows:
· When the Presence Server includes a data element in the notification request to the watcher application, it shall add a version identifier to the data element with an initialized value. The Presence Server shall store the content of the version identifier. 

· When watcher application first time receives such an element it must store the version number and the content of that data element

· If there are no changes to the data element the version identifier shall remain the same in subsequent notifications.

· If there is no change to the data element, the version identifier shall remain the same in subsequent notifications. In this case the Presence Server will only include the data element identifier and the version identifier in the notification requests. When the watcher application receives a notification, it shall use the data element identifier to check if it has already received information about the particular data element. If such identifier exists locally in the watcher application, it shall check the version identifier. If the version identifier matches the locally stored value then no further actions required from the watcher application. 

· When the data element has been changed compared to the previous notification, then the Presence Server shall increment the stored value (by one) of the version identifier and include it in the generated notification together with the new data element content. When the watcher application receives the notification, it will detect that version identifier has higher (higher by one) value compared to the previous notification, as a consequence it shall update the data element from the received notification and store the new value for the version identifier. If difference in local version number and received version number if larger than one (two or more) terminal should re-subscribe all presence information. This is because terminal has not fetched/received some peace of presence information, and it should synchronize it’s presence document with PS.

Version identifiers are only applicable within the dialog in which they were created. If the dialog is terminated and re-initiated all version identifiers are re-generated.

One example notification message might look like this:

<?xml version="1.0" encoding="UTF-8"?>

     <presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"

         entity="pres:someone@example.com">

         <tuple id="mobile-phone">

           <status>

            <basic>open</basic>

           </status>

         </tuple>

         <tuple id="my_picture">

           <ext_version_id>

               1020

           </ext:version_id>

           <ext:picture>


           picture.jpg

          </ext:picture>

       </tuple>

     </presence>
If tuple “mobile-phone” changes but tuple my_picture remains unchanged notification might look like this:
<?xml version="1.0" encoding="UTF-8"?>

     <presence xmlns="urn:ietf:params:xml:ns:cpim-pidf"

         entity="pres:someone@example.com">

             <tuple id="mobile-phone">

                 <status>

                     <basic>closed</basic>

                 </status>

             </tuple>

             <tuple id="my_picture">

                <ext_version_id>

                    1020

                 </ext:version_id>

              </tuple>

     </presence>
In this case the picture in “picture.jpg” is not transferred within the second notification because the watcher application has already received it and there has not been any changes to its value compared to the previous notification.






