

SA WG2 Temporary Document
Page 2

3GPP TSG-WG SA2 Meeting #162	S2-2404010
[bookmark: _Hlk123747553]Changsha, China, April 15 - 19, 2024	

Source:	China Mobile
Title:	Discussion Paper: TR 23.700-70 KI#2: Comparison & Evaluation of Solutions for Supporting PDU Set Info. Identification for E2E Encrypted XRM Traffic
Document for:	Discussion
Agenda Item:	19.3
Work Item / Release:	FS_XRM Ph2 / Rel-19
Abstract: this discussion paper compares and evaluates eight (8) different solutions that have been agreed as of now to support the PDU-set info. identification for end-to-end encrypted XRM streams.
1. Discussion
 Six (6) Categories with Eight (8) Solutions
For the KI#2 regarding the support of the PDU-set information identification for end-to-end encrypted XRM traffic, there are, as of now, eight different solutions that have been agreed and included in the TR 23.700-70. Namely, they are the solutions #9, #10, #11, #12, #24, #25, #26 and #27. Based on the respective IETF networking technologies that have been referenced, the eight (8) solutions can be categorized into the following six (6) types:
	
	Media-over-QUIC
	RTP-over-QUIC + UDP-option
	OFC (hash-like) + UDP-option
	Preconfigured N6-tunnel (GTP-U)
	MASQUE (Proxy-UDP-in-HTTP/3)
	MASQUE (QUIC-aware proxying)

	Solutions
	#9, #10
	#11, #27
	#12
	#25
	#24
	#26

When we compare the 6 categories of solutions in the following subsection, we will base our evaluations on the following criteria:
1) Whether the main target of the functionality is achieved, i.e., whether an end-to-end encrypted XRM stream would have its PDU-set info identified at the (N6-incoming) PSA-UPF, and simultaneously no media data, including metadata, could be compromised.
Note: this is the most critical criterion and will override any other criteria as listed below.
2) How mature is the proposed IETF technology, e.g., the stability of IETF draft(s)?
3) Scalability of a solution: can a solution scale without being significantly impacted by the increasing number of UEs?
4) Implementation complexity & performance impact to UPF: does a UPF have to spend lots of processing power to identify the PDU-set info. that is carried in the incoming encrypted media packet?
 Detailed Comparisons of Solutions – Category-based
This subsection compares the six categories of (eight) solutions.
Category#1: Media-over-QUIC
Both the solutions #9 and #10 belong to this category.
Media-over-QUIC (or MoQ) provides a low-latency media delivery solution. Its architectural setup is generally comprised of client(s), a media server and a MoQ relay. The media server and client(s) utilize publish and subscribe workflow to, via the rendezvous at the relay, to distribute and receive media data. MoQ uses an opaque type of data element, namely an addressable object, for data transmission. As per the MoQ IETF draft [Ref#9 in TR 23.700-70], an object consists of two parts, the metadata part and the payload.
Although the MoQ IETF draft is not sufficiently clear on how the connections among a UE, a relay and a media server might be set up, the direct engagement with the (co-)authors of the IETF MoQ draft [Ref#9 in TR 23.700-70] has confirmed that there are two QUIC connections: (1) one QUIC connection established between a UE and a relay, and (2) another QUIC connection between the relay and a media server.
Therefore, as explained in both of the solutions #9 & #10, shown in the following figure:

The encrypted media payload is placed in the MoQ payload section, while the Metadata section can be used to accommodate the PDU-set info. While the Metadata (i.e., the PDU-set info.) is never encrypted, the QUIC connection between a relay and a media server guarantees the integrity-protection of the transmission. Since the Metadata is not encrypted, so the UPF (of the N6 interface) would be able to retrieve the mattered PDU-set information directly.
Here are the evaluations of MoQ from the four criteria as set up in the section #1.1:
1) Functionality achieved:
· Yes! The encrypted media payload is transmitted end-to-end (i.e., media server-to-UE). The PDU-set info. is transmitted without compromise to UPF (where the MoQ relay runs) and the UPF can retrieve the information reliably and efficiently.
2) Maturity of IETF technology:
· Moderate! The IETF MoQ draft is relatively stable but still evolving. As per the latest update from the just-finished IETF-119, the corresponding IETF draft will highly likely mature within one year, which does fortunately align with the Rel-19 schedule of the XRM_Ph2.
3) Scalability of the solution:
· Yes, the solution does scale. Since the MoQ utilizes the publish/subscribe workflow, multiple clients (i.e., UEs) can subscribe to the same media channel via the common relay. The corresponding media server uses the same media channel to publish its media contents. So, the solution will not be impacted by the increasing number of UEs.
4) Implementation complexity & performance impact to UPF:
· Great! There is no significant performance and complexity impact. The relay runs on the UPF and the PDU-set info. is carried in the Metadata section of an MoQ object via a QUIC connection. The UPF terminates the QUIC (from the media server) and retrieves the information for processing.

Category#2: RTP-over-QUIC + UDP-option
Both the solutions #11 and #27 belong to this category.
Both solutions use the RTP over QUIC (RoQ) technology [Ref#8 in TR 23.700-70] for the end-to-end transmission of encrypted media payload. The UDP-option extension [Ref#21 in TR 23.700-70] is proposed for the in-band metadata transmission between a UPF (of the N6 interface) and a media server. The metadata is comprised of the so-called PDU-set information, as the author clearly suggests in the solution. The following figure shows the encapsulation stack of both the RTP payload and the metadata (in the UDP-option field).

As elucidated in the solution, when a UPF receives an IP packet of the N6 interface, it does not care the encrypted UDP-payload (via QUIC). Instead, it is only going to identify the PDU-set info. based on the metadata carried in the UDP-option field. However, this category of solutions has a deficiency: they do not provide an effective way to achieve the integrity-protection of the metadata (i.e., regarding the PDU-set info.) during its transport over the (public) network.
Thus, this solution type bears the intrinsic functional deficiency. We intend to consider the solution incomplete.

Category#3: OFC (hash-like) + UDP-option
The solution #12 belongs to this category.
This solution proposes to use a per-packet OFC (i.e., obfuscated metadata) between media servers and UPFs for the transmission of PDU-set info. (mapped & then carried in the OFC). The media payload is encrypted. The IETF draft UDP-option [Ref#21 in TR 23.700-70] is utilized to accommodate the OFC. The objective of the solution is to strive for the balance of the (sensitive metadata) privacy protection and the performance efficiency at a UPF (of the N6 interface).
In our view, we consider this solution a more hash-like algorithm with pre-configured OFC (so-named as ‘obfuscated codes’), in which OFCs, with proposed settings of certain randomness, correspond to different levels of PDU-set information (required to pre-define and/or pre-configured by operators). OFCs would be provided to 5GS via somewhat secured (out-of-band) channel.
In term of the targeted functionality to achieve secured metadata transmission (from a media server to a UPF), we view this solution can only provide weak integrity-protection. The reason lies in the hash-like essence of the mapping. The metadata of a PDU-set is not encrypted, but hashed. Even if the solution does try to mitigate the possibility of an attacker who may reverse-engineer from an OFC to the corresponding (sensitive) metadata, the lack of secured encryption of metadata does still post somewhat risk. That is why we label the solution can only provide the ‘weak’ privacy protection.
While the IETF draft UDP-option [Ref#21 in TR 23.700-70] is very stable and close to be published as an RFC, this solution requires another IETF draft to further extend the UDP AUTH option for authentication detection. There is currently no such kind of IETF WG draft, nor is there even an IETF individual draft. This makes the solution lack the timely standard support from the IETF perspective.
We do acknowledge the hash-like algorithm will make the implementation at a UPF fairly effective and reduce the processing load of the UPF.
Further, here are some additional issues associated with the solution:
· To reach the consensus OFC mappings for as much PDU-set dynamic information as possible
· OFC consensus among multiple ASes/AFs; may post challenges to operators’ OPs
· Algorithm (in the solution) is sort of complicated

Category#4: MASQUE (Proxy-UDP-in-HTTP/3)
The solution #24 belongs to this category.
This is a MASQUE-based solution. Compared to the other five categories of solutions, the biggest advantage of the solution is its maturity. That is, the fundamental algorithm of the solution is sufficiently mature, as reflected by the RFC-9298. However, there exist some major concerns of the solution.
· Performance concern:
The solution requires multi-layer nested encapsulations, i.e., the HTTP datagram encapsulation, then followed by the HTTP/3 datagram encap. The nested encap’s are as follows:
UDP Proxying HTTP Datagram Payload {
 Context ID (i),
 UDP Proxying Payload (..),
}
HTTP/3 Datagram {
 Quarter Stream ID (i),
 HTTP Datagram Payload (..),
}
Evidently, the multi-encap brings in extra processing burden

· Require IETF extension work:
The referenced RFC-9298 suggests the necessity to extend with a new context-ID setting, via a new IETF draft (which does NOT exist yet). The MASQUE-related solution using ‘connect-udp’ requires the use of UDP option [Ref#21 in TR 23.700-70] to accommodate & transmit the PDU-set information (as the metadata). However, currently the RFC-9298 only defines the behavior for the case context-ID=0:
[quoted]
UDP packets are encoded using HTTP Datagrams with the Context ID field set to zero.
[/quoted]).
The context-ID=0 does not offer the logics to handle the UDP-option extension. For all other context-ID values, the RFC-9298 suggests to drop the HTTP datagram, which will result in the failure of using UDP-option to carry the PDU-set metadata.
This discrepancy (related to the context-ID setting) necessitates the standard work in the IETF community, i.e., a stable IETF WG draft. Unfortunately, it does not exist yet. BTW, the solution itself does acknowledge the discrepancy: “… A new Datagram mode needs to be defined by using the Context ID (RFC-9298) indicating PDU set information…”.

· Scalability concern:
The MASQUE-based Proxy-UDP solution requires the per-UE per media-server tunnel. If an XRM media stream needs to be distributed to many UEs, then how to scale the mechanism is critical to consider. On the contrast, the solutions MoQ (and the later to-be-reviewed) QUIC-aware proxying can effectively scale with the number of UEs since the number of proxied (end-to-end) tunnels does not necessarily increase with the number of UEs.

Category#5: Preconfigured N6-Tunnel (GTP-u)
The solution #25 belongs to this category.
The solution utilizes a set of preconfigured N6 tunnels that are configured between a UPF (of the N6 interface) in an operator’s network and a trusted XRM App Server in a third-party SP. The tunneling technology as suggested in the solution is the GTP-U. The PDU-set info. is provided via the (GTP-U) tunneling encapsulation header.
While the solution seems simple, there are still somewhat concerns to be addressed:
· Maturity of technology:
The solution relies on the existence of extensible encapsulation header. While the GTP-U does own the capability to extend, there is not yet any stable & mature IETF draft. Another possibility to address the extension is by CT.
· Scalability concern:
How to determine the necessary number of N6-tunnels (i.e., GTP-U in the solution) to be established? Will the tunnel# increase proportionally with the number of UEs? If not, what is the criteria to decide?
· Security concern:
An operator may be concerned of exposing its UPF information to external 3rd-party content providers for GTP-U tunnel setup.

Finally, the same scheme has been investigated in the Rel-18 and the conclusion was that the industry will not support it.

Category#6: MASQUE (QUIC-Aware Proxying)
The solution #26 belongs to this category.
This is also a MASQUE-based solution. The main difference between the previous MASQUE:Proxy-UDP-in-HTTP solution and this MASQUE:QUIC-aware proxying solution is that the previous one requires the per-UE per-Media-server tunnel, while this one can utilize a common tunnel to service many UEs. So, basically, the scalability concern (of the previous one) is out of the question.
However, this solution has a design bug that is dramatically undermining the merit of the solution. The solution adopts the forward-mode as specified in the IETF draft [draft-ietf-masque-quic-proxy-01], of which the QUIC short-header is mandatorily required. Please note there is only QUIC:CID in a short header and there is no length field.
The solution proposes to coalesce two QUIC packets to form a to-be-defined UDP datagram. The 1st QUIC packet carries the PDU-set information while the 2nd QUIC packet contains the encrypted XRM payload. Since the QUIC short-header lacks the length information, only knowing the full-length of the composite UDP datagram will prevent a UPF from identifying the demarcation point between the two coalesced QUIC packets. Therefore, the solution fails mathematically.
Further, there is no stable IETF draft to define the coalescing of the two (short-header) QUIC packets. This is another drawback of the solution.
Moreover, the QUIC [RFC#9000] has clearly stated that “… Senders MUST NOT coalesce QUIC packets with different connection IDs into a single UDP datagram. Receivers SHOULD ignore any subsequent packets with a different Destination Connection ID than the first packet in the datagram…”. As specified in the solution, the two coalesced QUIC packets have different receivers, which renders them having different CID. Thus, this is another design-bug of the solution.
All-in-one Summary
So, we can use the following table for an all-in-one comparison.
	
	KI#2 achieve objective/functionality
	IETF Technology maturity
	Solution scalability
	Implementation complexity & perf. impact

	Media-over-QUIC
(#9, #10)
	Achieve
	Moderate (MoQ draft still evolving)
	Good
	Good

	RTP-over-QUIC + UDP-option
(#11, #27)
	Incomplete
(non-protected metadata)
	————
	————
	————

	OFC (hash-like) + UDP-option
(#12)
	Weakly achieve
(bug have intrinsic risk)
	Fair (Need UDP-option extension)
	Good
	Fair
(w/ additional issues)

	Preconfigured N6-tunnel (GTP-U)
(#25)
	Achieve
	Fair (Need extension: IETF or 3GPP/CT)
	Further consideration
	Good
(but operator info. exposure concern)

	MASQUE (Proxy-UDP-in-HTTP/3)
(#24)
	Achieve
	Moderate (Need context-ID extension processing)
	Require improvement
	Fair
(nested encap.)

	MASQUE (QUIC-aware proxying)
(#26)
	Incomplete
(Design deficiencies)
	————
	[bookmark: _GoBack]Good (if design bugs are addressed, then the solution is good)
	————

Note: If a solution does not achieve the complete KI#2 objective (i.e., the most critical criterion), we would place it in a lower ‘incomplete’ ranking when compared to the other solutions.
2. Proposal
[bookmark: _Toc519004414]Based on the multi-facet comparison table in the section 1, we draw our recommendation:
Recommendation: The solutions that are based on the Media over QUIC (MoQ) technology, i.e., the solutions #9 and #10, are the best candidates to be adopted forward.
3GPP
SA WG2 TD

image1.emf

oleObject1.bin
[image: image1.png]Integrity-protected from any public
intermediary (via QUIC)

A
r N
MoQ object
o)
oQ oQ Paylaod:
:DZ uic etadata TP header/payload: fully
eaderencap or XRM r partially encrypted
Visible to Protected from
relay (UPF) a relay (UPF)

image2.emf

oleObject2.bin
[image: image1.png]IP header

UDP header UDP Payload
QUIC stream QUIC packet
auic
el QUIC payload
RTP | RTP packal RTP packel
packet() | (1) N

UDP Option

RTP session

RTP packets

