Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
1
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

3GPP Meeting S2#14
Document
S2-001626

Bristol, Great Britain, 4- 8 September 2000

e.g. for 3GPP use the format TP-99xxx

or for SMG, use the format P-99-xxx

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

23.127
CR
14
Current Version:
3.1.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
SA#9
for approval
x

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
x

(at least one should be marked with an X)

Source:
Siemens
Date:
31.8.2000

Subject:
Alignments Parlay <-> OSA

Work item:
OSA

Category:
F
Correction
X
Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification

Release 99
x

Release 00

Reason for
change:

As an ongoing activity, differences between the 23.127 and the Parlay 2.1 specification must be deleted. This CR address differences in the access SCF.

Clauses affected:
6.1.3

Other specs
Other 3G core specifications
x
(List of CRs:
29.198 CR 009R1 (Tdoc N5-00136)

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

[image: image1.wmf]help.doc

 <--------- double-click here for help and instructions on how to create a CR.

6.1.3
OSA Access

During an authenticated session accessing the Framework, the application will be able to select and access an instance of a framework or network service capability feature.

Access to framework SCFs is gained by invoking the obtainInterface, or obtainInterfaceWithCallback methods. The latter is used when a callback reference is supplied to the framework. For example, a network SCF discovery interface reference is returned when invoking obtainInterface with "discovery" as the SCF name.

In order to use network SCFs, the application must first be authorised to do so by establishing a service agreement with the Home Environment. The application uses the discovery SCF to retrieve the ID of the network SCF they wish to use.They may then use the accessCheck method to check that they are authorised to use the network SCF. The selectService method is used to tell the Home Environment that the application wishes to use the network SCF. The signServiceAgreement method is used to digitally sign the agreement, and provide non-repudiation for both parties in agreeing that the SCF would be available for use.

Establishing a service agreement is a business level transaction, which requires the HE-VASP that owns the application to agree terms for the use of an SCF with the Home Environment. Service agreements can be reached using either off-line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and so are not described here. However, applications can make use of service agreements that are made off-line. Some Home Environments may only offer off-line mechanisms to reach service agreements.

After a service agreement has been established between the application and the Home Environment domains, the application will be able to make use of this agreement to access the network SCF.

The accessCheck method allows the application to check whether it has permission to access (read, write, etc) to a specified SCF, and specific SCF features. The application defines the security domain and context of access to the SCF. The access control policy is based on a number of conditions, events and permissions that determine whether the application is authorised to access the SCF/feature.

The accessCheck method is optional, in that can be called by the application to check that it has permission to use specific SCF features, before starting an SCF instance. It is not compulsory for the application to make this check before selecting a network SCF and signing a service agreement to use an instance of the SCF. If the accessCheck method confirms that the application has permission to use a specific SCF feature, then this feature should be available to the application when using the SCF instance. The Home Environment may include the results of the accessCheck as part of the service agreement, that is signed before using an SCF instance, thereby assuring the application that the SCF features will be available.

The selectService method is used to identify the SCF that the application wishes to use. A list of service properties initialises the SCF, and an SCF token is returned. The application and Home Environment must sign a copy of the service agreement to confirm the use of the SCF. The framework invokes signServiceAgreement method on the applications's Access callback interface with the service agreement text to be signed. The application uses its digital signature key to sign the agreement text, and return the signed text to the framework. The application then calls the signServiceAgreement method on the OSA Access SCF. The framework signs the agreement text, retrieves a reference to a network manager interface for the selected SCF (using the getServiceManager method defined in clause 8), and returns this reference to the client application. In addition, the OSA Access interface may be invoked by SCSs in the context of SCF registration, see subclause 8.1.

The OSA Access framework SCF is defined by a single interface, which consists of the following methods.

Method
obtainInterface ()

The application uses this method to obtain interface references to other framework SCFs (e.g. discovery, load manager). (The obtainInterfacesWithCallback method should be used if the application is required to supply a callback interface to the framework.)

Direction
Application to network

Parameters
interfaceName

The name of the framework SCF to which a reference to the interface is requested.

Returns
fwInterface

This is the reference to the SCF interface requested.

Errors
INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method
obtainInterfaceWithCallback ()

The application uses this method to obtain interface references to other framework SCFs (e.g. discovery, load manager), when they are required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Direction
Application to network

Parameters
interfaceName

The name of the framework SCF to which a reference to the interface is requested.

appInterface

This is the reference to the application interface which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns
fwInterface

This is the reference to the SCF requested.

Errors
INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method
accessCheck()

This method may be used by the application to check whether it has been granted permission to access the specified SCF. The response is used to indicate whether the request for access has been granted or denied and if granted the level of trust that will be applied.

Direction
Application to network

Parameters
serviceToken

The serviceToken identifies the specific SCF that the client application wishes to access. The service Token identifies the service type and service properties selected by the client application when it invoked selectService().
securityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

securityDomain

The security domain in which the application is operating may influence the access control decisions and the specific set of features that the requestor is entitled to use.

group

A group can be used to define the access rights associated with all applications that belong to that group. This simplifies the administration of access rights.

serviceAccessTypes

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as well as those specific to SCFs.

Returns
serviceAccessControl

This is a structure containing:

· policy: indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

· trustLevel: The trustLevel parameter indicates the trust level that the Home Environment has assigned to the application.

Errors

Method
selectService ()

This method is used by the application to identify the network SCF that the application wishes to use.

Direction
Application to network

Parameters
serviceID

This identifies the SCF required.

serviceProperties

This is a list of the properties that the SCF should support. These properties (names and values) are used to initialise the SCF instance for use by the application.

Returns
serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (INVALID_Service_TOKEN). Service Tokens will automatically expire if the application or framework invokes the endAccess method on the other's corresponding access interface.

Errors
INVALID_SERVICE_ID

Returned if the serviceID is not recognised by the framework

INVALID_SERVICE_PROPERTY

Returned if a property is not recognised by the framework

Method
signServiceAgreement()(application to network)
This method is used by the application to request that the framework sign an agreement on the SCF, which allows the application to use the SCF. If the framework agrees, both parties sign the service agreement, and a reference to the manager interface of the SCF is returned to the application.

Direction
Application to network

Parameters
serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance requested by the application.

agreementText

This is the agreement text that is to be signed by the framework using the private key of the framework.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns
signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the framework for the service agreement, and a reference to the manager interface of the SCF:

· The digitalSignature is the signed version of a hash of the service token and agreement text given by the application.

· The serviceMgrInterface is a reference to the manager interface for the selected SCF.

Errors
INVALID_SERVICE_TOKEN

Returned if the serviceToken is not recognised by the framework

Method
signServiceAgreement()(network to application)
This method is used by the framework to request that the application sign an agreement on the SCF. It is called in response to the application calling the selectService() method on the Access SCF of the framework. The framework provides the service agreement text for the application to sign. If the application agrees, it signs the service agreement, returning its digital signature to the framework.

Direction
Network to application

Parameters
serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance to which this service agreement corresponds. (If the application selects many SCFs, it can determine which selected SCF corresponds to the service agreement by matching the service token.)

agreementText

This is the agreement text that is to be signed by the application using the private key of the application.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns
digitalSignature

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Errors

Method
terminateServiceAgreement()(application to network)
This method is used by the application to terminate a service agreement for the SCF.

Direction
Application To Network

Parameters
serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the application. If a match is made, the service agreement is terminated, otherwise an error is returned.

Returns

Errors

Method
terminateServiceAgreement() (network to application)

This method is used by the framework to terminate a service agreement for the SCF.

Direction
Network to application

Parameters
serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the application. The application can check that the terminationText has been signed by the framework.

Returns

Errors

Method
endAccess()

The endAccess method is used to end the application's access session with the framework. The application requests that its access session be ended. After it is invoked, the application will not longer be authenticated with the framework. The application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these SCF interfaces will fail.

Direction
Application To Network

Parameters
endAccessProperties

This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.

Returns

Errors

Method
terminateAccess ()

The terminateAccess method is used to end the application's access session with the framework (e.g. this may be done if the framework believes the application is masquerading as someone else. Using this method will force the application to re-authenticate if it wishes to continue using the framework SCFs.)

After terminateAccess() is invoked, the application will not longer be authenticated with the framework. The application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these interfaces will fail.

Direction
Network to application

Parameters
terminationText

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm

This is the algorithm used to compute the digital signature.

digitalSignature

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the application. The application can check that the terminationText has been signed by the framework.

Returns

Errors

3GPP

_997805625.doc
How to create a CR
Michael Sanders, 3GPP support team, (last updated 2/09/99)

1)
Open the CR cover sheet with MS Word 97. The lastest version of the CR coversheet can be found at:

ftp://ftp.3gpp.org/information/3gCRF-??.DOC

2)
Fill out all areas that are relevant on the CR cover sheet - only the areas that have yellow shading shall be filled out. See Annex A of these instructions for further detail.

3)
Open the specification to which you wish to make a change. It is very IMPORTANT to ensure that you are using the latest version of the specification to make the change. The latest versions of all approved 3G specifications is located at:

for the 3GPP: ftp://ftp.3gpp.org/specifications/ for SMG: http://docbox.etsi.org/tech-org/document/smg/specs

Do a "save as" using a file name related to the tdoc number (e.g. T3-99123.DOC).

4)
If the formatting looks incorrect (most easily noticed by the fact that there is no space between paragraphs), it may be because you do not have the correct document sheet in your MS Word style directory. All 3GPP specification use the style sheet 3GPP_70.DOT. This can be downloaded from:

ftp://ftp.3gpp.org/information/3gpp_70.dot

5)
Go to the beginning of the heading of the first subclause which you want to change. Press <CTRL><SHIFT><HOME> to select everything before that point and delete it.

6)
Switch to the window in MS word that contains your CR cover sheet and do a <CTRL>A <CTRL>C to select and copy the entire sheet (including the section break at the end). Switch back to the other window with the specification to be changed and paste it in.

7)
Between group of changed pages in the CR, insert a section break (insert / break / next page/)

8)
When all the changes have been made (using the "tools / track changes" feature of MS Word 97), the headers and page number need to be corrected other the headers will contain an error message like "error, reference not found". You can fix this by changing to page layout mode (view / page layout) to see the headers. Then, go to the menu item "view / header and footer", select the frame that contains the error message(s) ini the header and delete them (there are normally 2). Do not delete the page number in the middle. On the left side, write the spec name and current version number For example, "3G TS 21.111 version 3.0.0 (1999-04)". Go back to normal view.

9)
For each group of changes, insert the correct starting page number. The number should be that which is a clean unmodified specification. It is only a guide to the reader only and so they can be +/- 1 page number wrong. Insert the page number using the following method. Go to the line following the first section break in your CR. Choose the menu item insert / page number / format / start at and insert the correct starting page number for that group of changes. click "OK" and then "CLOSE" (don't press "OK" at this last step). Repeat this step for each section break.

10)
When you have finished making all changes, go to "tools / track changes / highlight changes" and uncheck the "track changes while editing" box, otherwise the page numbers in the headers will be difficult to read. Make sure that the two other options in this box (highlight changes on screen" and "highlight changes in printed document" are both maked "X".

Examples of expressions of prevision in 3GPP specifications

To ensure that everybody else understands your proposed chnaged the same way that you do, it is very important to keep to the following rules:

SHALL: To be used to indicate a requirement. e.g. "The ME shall reset the USIM" is correct Do not use "The ME resets the USIM" or "the ME must reset the USIM"

SHOULD: To be used to indicate recommendation. i.e. if, among several possibilities one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

MAY: To be used to indicate permission. To be used instead of phrases such as "is permitted", "is allowed" or is permissible". The opposite of "may" is "need not".

CAN: To be used to indicate possibility and capability. To be used instead of phrases such as "be able to", "there is a possibility of" or "it is possible to".

A more detailed guide to the 3GPP drafting rules can be found on the 3GPP server at:

ftp://ftp.3gpp.org/information/drafting-rules.pdf

ANNEX A
The CR cover sheet

This annex provides further information on how to fill out the cover sheet of a CR.

The header:

a)
The header, including the TSG or Working Group, the tdoc number (normally obtinaed from the 3GPP support team) and the meeting location and date.

The title box:

b)
The change request number. This is a 3 digit number and is allocated by the 3GPP support team project manager of the relevant WG. For GSM specifications, it is prefixed with an "A"

c)
The 3G or GSM specification number (e.g. 21.111 for 3G or 12.05 for GSM).

d)
The TSG or SMG plenary meeting to which this CR will be submitted to if it gets agreed at the WG meeting.

e)
for approval/for information: one box only shall be marked with an "X"

Proposed change affects:

f)
At least one box shall be marked with an "X"

Source:

g)
The company name of the author of the CR. If the CR has already been agreed at a Working groups or sub working group, meeting, the subgroup name (and Tdoc number) should be used instead.

Subject:

h)
One line (only) of concise text that describes the subject of the CR. Details should be put under "reason for change"

good examples:
"Clarification to FETCH command"

"Alignment of operation and parameter names"

recently used

bad examples:
"correction"

"editorial correction"

"correction to TS xxx.yy"

"various improvements"

Work item:

h)
The name of the 3G work item for which the CR is relevant.

Category and release:

i)
Choose one category only

Reason:

j)
This should be 1 to 10 lines of text that describes in further detail the reasons why the change is necessary and how the change is done.

Clauses Affected:

m)
Each subclause that is affected by the change should be listed here. New subclause number can be followed by " (new) ".

Other specs affected:

n)
Other 3G core specifications: to be used if the CR is linked to a CR for another 3G specification.
Other 2G core specifications: to be used if a CR is also needed for a GSM or other 2G specification.

MS test specifications: to be used if a change is needed to the MS test specifications.

BSS test specifications: to be used if a change is needed to the base station test specifications.

O&M specifications: to be used if a change is needed to O&M specifications.

When listing other CRs in part n) use, for example, the form "21.111-CR001" or "12.05-A123"

How to create a CR for 3G or SMG specifications.

File location: http://ftp.3gpp.org/information/3gCRF-??.doc

