Fehler! Kein Text mit angegebener Formatvorlage im Dokument.
1
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.

3GPP Meeting S2#14
Document
S2-001626

Bristol, Great Britain, 4- 8 September 2000

e.g. for 3GPP use the format  TP-99xxx 

or for SMG, use the format  P-99-xxx







CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.




23.127
CR
14
Current Version:
3.1.0








GSM (AA.BB) or 3G (AA.BBB) specification number (

( CR number as allocated by MCC support team



For submission to: 
SA#9
for approval
x

strategic

(for SMG

list expected approval meeting # here (
for information


non-strategic

use only)





Form: CR cover sheet, version 2 for 3GPP and SMG        The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc



Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
x

(at least one should be marked with an X)



Source:
Siemens
Date: 
31.8.2000



Subject:
Alignments Parlay <-> OSA



Work item:
OSA



Category: 
F
Correction
X
Release: 
Phase 2



A
Corresponds to a correction in an earlier release


Release 96


(only one category 
B
Addition of feature


Release 97


shall be marked
C
Functional modification of feature


Release 98


with an X)
D
Editorial modification


Release 99
x





Release 00




Reason for 
change:

As an ongoing activity, differences between the 23.127 and the Parlay 2.1 specification must be deleted. This CR address differences in the access SCF.



Clauses affected:
6.1.3



Other specs
Other 3G core specifications
x
(  List of CRs:
29.198 CR 009R1 (Tdoc N5-00136)

affected:
Other GSM core specifications

(  List of CRs:



MS test specifications

(  List of CRs:



BSS test specifications

(  List of CRs:



O&M specifications

(  List of CRs:




Other 
comments:



[image: image1.wmf]help.doc

  <--------- double-click here for help and instructions on how to create a CR.

6.1.3
OSA Access

During an authenticated session accessing the Framework, the application will be able to select and access an instance of a framework or network service capability feature.

Access to framework SCFs is gained by invoking the obtainInterface, or obtainInterfaceWithCallback methods. The latter is used when a callback reference is supplied to the framework. For example, a network SCF discovery interface reference is returned when invoking obtainInterface with "discovery" as the SCF name.

In order to use network SCFs, the application must first be authorised to do so by establishing a service agreement with the Home Environment. The application uses the discovery SCF to retrieve the ID of the network SCF they wish to use.They may then use the accessCheck method to check that they are authorised to use the network SCF. The selectService method is used to tell the Home Environment that the application wishes to use the network SCF. The signServiceAgreement method is used to digitally sign the agreement, and provide non-repudiation for both parties in agreeing that the SCF would be available for use.

Establishing a service agreement is a business level transaction, which requires the HE-VASP that owns the application to agree terms for the use of an SCF with the Home Environment. Service agreements can be reached using either off-line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and so are not described here. However, applications can make use of service agreements that are made off-line. Some Home Environments may only offer off-line mechanisms to reach service agreements.

After a service agreement has been established between the application and the Home Environment domains, the application will be able to make use of this agreement to access the network SCF.

The accessCheck method allows the application to check whether it has permission to access (read, write, etc) to a specified SCF, and specific SCF features. The application defines the security domain and context of access to the SCF. The access control policy is based on a number of conditions, events and permissions that determine whether the application is authorised to access the SCF/feature.

The accessCheck method is optional, in that can be called by the application to check that it has permission to use specific SCF features, before starting an SCF instance. It is not compulsory for the application to make this check before selecting a network SCF and signing a service agreement to use an instance of the SCF. If the accessCheck method confirms that the application has permission to use a specific SCF feature, then this feature should be available to the application when using the SCF instance. The Home Environment may include the results of the accessCheck as part of the service agreement, that is signed before using an SCF instance, thereby assuring the application that the SCF features will be available.

The selectService method is used to identify the SCF that the application wishes to use. A list of service properties initialises the SCF, and an SCF token is returned. The application and Home Environment must sign a copy of the service agreement to confirm the use of the SCF. The framework invokes signServiceAgreement method on the applications's Access callback interface with the service agreement text to be signed. The application uses its digital signature key to sign the agreement text, and return the signed text to the framework. The application then calls the signServiceAgreement method on the OSA Access SCF. The framework signs the agreement text, retrieves a reference to a network manager interface for the selected SCF (using the getServiceManager method defined in clause 8), and returns this reference to the client application. In addition, the OSA Access interface may be invoked by SCSs in the context of SCF registration, see subclause 8.1.

The OSA Access framework SCF is defined by a single interface, which consists of the following methods.

Method
obtainInterface ()

The application uses this method to obtain interface references to other framework SCFs (e.g. discovery, load manager). (The obtainInterfacesWithCallback method should be used if the application is required to supply a callback interface to the framework.)

Direction
Application to network

Parameters
interfaceName

The name of the framework SCF to which a reference to the interface is requested. 

Returns
fwInterface

This is the reference to the SCF interface requested.

Errors
INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method
obtainInterfaceWithCallback ()

The application uses this method to obtain interface references to other framework SCFs (e.g. discovery, load manager), when they are required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Direction
Application to network

Parameters
interfaceName

The name of the framework SCF to which a reference to the interface is requested. 

appInterface

This is the reference to the application interface which is used for callbacks. If an application interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns
fwInterface

This is the reference to the SCF requested.

Errors
INVALID_INTERFACE_NAME

Returned if the interfaceName is invalid.

Method
accessCheck()

This method may be used by the application to check whether it has been granted permission to access the specified SCF. The response is used to indicate whether the request for access has been granted or denied and if granted the level of trust that will be applied. 

Direction
Application to network

Parameters
serviceToken

The serviceToken identifies the specific SCF that the client application wishes to access. The service Token identifies the service type and service properties selected by the client application when it invoked selectService().
securityContext

A context is a group of security relevant attributes that may have an influence on the result of the accessCheck request.

securityDomain

The security domain in which the application is operating may influence the access control decisions and the specific set of features that the requestor is entitled to use.

group

A group can be used to define the access rights associated with all applications that belong to that group. This simplifies the administration of access rights. 

serviceAccessTypes

These are defined by the specific Security Model in use but are expected to include: Create, Read, Update, Delete as well as those specific to SCFs.

Returns
serviceAccessControl

This is a structure containing: 

· policy: indicates whether access has been granted or denied. If granted then the parameter trustLevel must also have a value.

· trustLevel: The trustLevel parameter indicates the trust level that the Home Environment has assigned to the application.

Errors


Method
selectService ()

This method is used by the application to identify the network SCF that the application wishes to use.

Direction
Application to network

Parameters
serviceID

This identifies the SCF required. 

serviceProperties

This is a list of the properties that the SCF should support. These properties (names and values) are used to initialise the SCF instance for use by the application. 

Returns
serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (INVALID_Service_TOKEN). Service Tokens will automatically expire if the application or framework invokes the endAccess method on the other's corresponding access interface. 

Errors
INVALID_SERVICE_ID

Returned if the serviceID is not recognised by the framework

INVALID_SERVICE_PROPERTY

Returned if a property is not recognised by the framework

Method
signServiceAgreement()(application to network)
This method is used by the application to request that the framework sign an agreement on the SCF, which allows the application to use the SCF. If the framework agrees, both parties sign the service agreement, and a reference to the manager interface of the SCF is returned to the application.

Direction
Application to network

Parameters
serviceToken 

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance requested by the application. 

agreementText

This is the agreement text that is to be signed by the framework using the private key of the framework.

signingAlgorithm 

This is the algorithm used to compute the digital signature.

Returns
signatureAndServiceMgr 

This is a reference to a structure containing the digital signature of the framework for the service agreement, and a reference to the manager interface of the SCF:

· The digitalSignature is the signed version of a hash of the service token and agreement text given by the application.

· The serviceMgrInterface is a reference to the manager interface for the selected SCF.

Errors
INVALID_SERVICE_TOKEN

Returned if the serviceToken is not recognised by the framework

Method
signServiceAgreement()(network to application)
This method is used by the framework to request that the application sign an agreement on the SCF. It is called in response to the application calling the selectService() method on the Access SCF of the framework. The framework provides the service agreement text for the application to sign. If the application agrees, it signs the service agreement, returning its digital signature to the framework.

Direction
Network to application

Parameters
serviceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the SCF instance to which this service agreement corresponds. (If the application selects many SCFs, it can determine which selected SCF corresponds to the service agreement by matching the service token.)

agreementText 

This is the agreement text that is to be signed by the application using the private key of the application.

signingAlgorithm 

This is the algorithm used to compute the digital signature.

Returns
digitalSignature 

The digitalSignature is the signed version of a hash of the service token and agreement text given by the framework.

Errors


Method
terminateServiceAgreement()(application to network)
This method is used by the application to terminate a service agreement for the SCF.

Direction
Application To Network

Parameters
serviceToken 

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText 

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature 

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the application. If a match is made, the service agreement is terminated, otherwise an error is returned.

Returns


Errors


Method
terminateServiceAgreement() (network to application)

This method is used by the framework to terminate a service agreement for the SCF.

Direction
Network to application

Parameters
serviceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.

terminationText 

This is the termination text describes the reason for the termination of the service agreement.

digitalSignature 

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to confirm its identity to the application. The application can check that the terminationText has been signed by the framework.



Returns


Errors


Method
endAccess()

The endAccess method is used to end the application's access session with the framework. The application requests that its access session be ended. After it is invoked, the application will not longer be authenticated with the framework. The application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these SCF interfaces will fail.

Direction
Application To Network

Parameters
endAccessProperties

This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running).  If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned. 

Returns


Errors


Method
terminateAccess ()

The terminateAccess method is used to end the application's access session with the framework (e.g. this may be done if the framework believes the application is masquerading as someone else. Using this method will force the application to re-authenticate if it wishes to continue using the framework SCFs.) 

After terminateAccess() is  invoked, the application will not longer be authenticated with the framework. The application will not be able to use the references to any of the framework SCFs gained during the access session. Any calls to these interfaces will fail.

Direction
Network to application

Parameters
terminationText 

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm 

This is the algorithm used to compute the digital signature.

digitalSignature 

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the application. The application can check that the terminationText has been signed by the framework.

Returns


Errors
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