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Draft new Recommendation ITU-T Y.IMT2020-ML-Arch 

Architectural framework for machine learning in future networks including 

IMT-2020 

  

1 Scope 

This Recommendation specifies an architectural framework for machine learning in future networks 

including IMT-2020. 

A set of architectural requirements is presented, which in turn leads to specific architectural 

components needed to satisfy these requirements. This Recommendation also describes an 

architectural framework for integration of such components into future networks including IMT-

2020 and guidelines for applying this architectural framework in a variety of technology-specific 

underlying networks.  

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the 

currently valid ITU-T Recommendations is regularly published. The reference to a document within 

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.3100]  ITU T Recommendation Y.3100 (2017), “Terms and definitions for IMT-2020 

network” 

[ITU-T Y.3104]  ITU T Recommendation Y.3104 (2018), “Architecture of the IMT-2020 

network” 

[ITU-T Y.3110]  ITU T Recommendation Y.3110 (2017), “IMT-2020 network management and 

orchestration requirements” 

[ITU-T Y.3111]  ITU T Recommendation Y.3111 (2017), “IMT-2020 network management and 

orchestration framework”  

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

None 

3.2 Terms defined in this document 

This Recommendation defines the following terms: 

3.2.1  machine learning (ML): processes that enable computational systems to understand data 

and gain knowledge from it without necessarily being explicitly programmed. 

NOTE - Definition adapted from [b-ETSI GR ENI 004]. 
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3.2.2   machine learning function orchestrator (MLFO): a logical orchestrator that can monitor 

and manage the nodes in a machine learning pipeline. 

3.2.3  machine learning pipeline: a set of logical nodes, each with specific functionalities, that 

can be combined to form a machine learning application in a telecommunication network. 

NOTE – The nodes are entities that are managed in a standard manner and can be hosted in a 

variety of network functions.  

3.2.4  machine learning sandbox: an environment in which machine learning models can be 

trained, verified and their effects on the network analysed. 

 NOTE – A machine learning sandbox is designed to prevent a machine learning application 

from affecting the network, or to restrict the usage of certain machine learning 

functionalities. 

3.2.5 machine learning model: model created by applying machine learning techniques with data 

to learn from. 

NOTE 1 – A machine learning model is used to generate predictions on new (untrained) 

data. 

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the 

form of a software or hardware component. 

NOTE 3 – Machine learning techniques include learning algorithms (e.g. learning the 

function that maps input data attributes to output data). 

3.2.6 machine learning overlay: a loosely coupled deployment model of machine learning 

functionalities where the integration and management of machine learning functionalities, 

building on a number of network functions of underlying communication networks, are 

standardized.  

NOTE – The integration and management of different implementations of both machine 

learning functionalities and network functions is enabled by such a standardization. 

Interdependencies between the two are minimized using standard interfaces, allowing for 

parallel evolution of functionalities of the two. 

3.2.6 machine learning underlay network: a telecommunication network and its related network 

functions which interfaces with corresponding ML overlays.  

NOTE – An IMT-2020 network is an example of underlay network. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AF  Application Function 

AN  Access Network 

API  Application Programming Interface 

AR/VR  Augmented Reality/Virtual Reality 

C  Collector (ML pipeline) 

CN  Core Network 

EMS  Element Management System 

FMC  Fixed Mobile Convergence 
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GPU  Graphic Processor Unit 

IoT  Internet of Things 

KPI  Key Performance Indicator 

M  Model (ML pipeline) 

mIoT  massive Internet of Things 

MEC  Multi-access Edge Computing 

ML  Machine Learning 

MLFO  Machine Learning Function Orchestrator 

MPP  Mobility Pattern Prediction 

MnS  Management Service 

NF  Network Function 

NOP  Network Operator 

OAM  Operations, Administration and Maintenance 

P  Policy (ML pipeline) 

PP  Pre-processor (ML pipeline) 

QoS  Quality of Service 

RCA  Root Cause Analysis 

RRC  Radio Resource Control 

SBA  Service-Based Architecture 

SMF  Session Management Function 

SON   Self-Optimizing Network 

SRC  source 

UE  User Equipment 

UPF  User Plane Function 

V2X   Vehicle-to-everything 

VoLTE  Voice over Long-Term Evolution 

5 Conventions 

In this Recommendation, requirements are classified as follows:       

The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted if conformance to this Recommendation is to be 

claimed. 

The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, this requirement need not be present to claim 

conformance. 

The keywords "can optionally" indicate an optional requirement which is permissible, 

without implying any sense of being recommended. This term is not intended to imply that 

the vendor's implementation must provide the option and the feature can be optionally 
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enabled by the network operator/service provider. Rather, it means the vendor may 

optionally provide the feature and still claim conformance with the specification. 

In the body of this Recommendation and its annexes, the words shall, shall not, should, and 

may sometimes appear, in which case they are to be interpreted, respectively, as is required 

to, is prohibited from, is recommended, and can optionally. The appearance of such phrases 

or keywords in an appendix or in material explicitly marked as informative is to be 

interpreted as having no normative intent. 

ML pipeline – When the symbol shown in Figure 1 below is used, this denotes a subset (including 

proper subset) of nodes in a ML pipeline. When this symbol is used in a figure, the symbol stands 

for the subset of a ML pipeline’s nodes not explicitly shown in that figure. 

 

Figure 1 - Symbol used to denote the ML pipeline 

Service egress and ingress points of ML pipeline nodes – The nodes in a ML pipeline use Service 

Based Architecture (SBA) [b-ETSI TS 129 500] to communicate with technology-specific underlay 

networks and the MLFO (machine learning function orchestrator). This is denoted by the symbol in 

figure 2. 

 

Figure 2 - Symbol used to denote the service egress and ingress points of the ML pipeline 

nodes  

6 Introduction 

Machine learning (ML) provides a way to teach computational system to learn knowledge using data 

without necessarily being explicitly programmed in order to realize complicated tasks such as 

characteristic detection or behaviour prediction. As ML becomes an important technical trend in the 

industry, network operators and various stakeholders are searching for cost-effective ways to 

incorporate ML into the future networks including IMT-2020.  

While the benefits from such an integration have been discussed under many use cases (e.g., 
troubleshooting of network problems, network traffic prediction, traffic optimization adjustment, 

network security auditing [b-ITU Y.3650] [b-ITU Y.3170]), there are many challenges to such an 

integration. Some of the important challenges are: 

A. Heterogeneous nature of ML functionalities and unique characteristics of various future 

communication technologies impose a varied set of requirements for integration. 

B. Roadmaps for evolution of these ML functionalities and communication networks are not 

aligned.  

C. Cost of integration, in terms of architecture impacts, is an important consideration. 

D. Disparate management mechanisms for ML functionalities and network functions will 

disrupt the operations management of communication networks. 

An architectural framework for integration of ML with future networks including IMT-2020 is 

needed to address these challenges.  

https://wiki.edgexfoundry.org/display/FA/Introduction%20+to+EdgeX+Foundry.
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Building on high-level architectural requirements, such a framework can at first provide a common 

vocabulary and nomenclature for ML functionalities and their relationships with the communication 

networks.  

Then, it can specify the interface points with future networks including IMT- 2020 which enable 

loosely coupled integration with ML functionalities.  

Management mechanisms for ML are described in the framework in alignment with the existing 

management principles which have been identified in IMT-2020 networks.  

The realisation of such an ML framework upon different underlying networks enables a standard 

method of introducing and managing ML functionalities in future networks including IMT-2020.   

7 High-level architectural requirements 

High-level architectural requirements are classified as follows.  

● Requirements set #1: enablers for correlation of data across levels and heterogenous 

technologies. This requirement set addresses the challenge A mentioned in clause 6 and the 

requirements which fall into this set are REQ-ML001, 002, 003. NOTE - Levels are parts of 

the network, the reference points between the network entities in those deployments are 

defined in the underlying network architecture (e.g. ITU-T Y.3104).  

● Requirements set #2: enablers for deployment. This requirement set addresses the challenge 

B mentioned in clause 6 and the requirements which fall into this set are REQ-ML-004, 005, 

008, 019.  

● Requirements set #3: these requirements are related to various interfaces between the 

architectural components. This requirement set addresses the challenges B and C mentioned 

in clause 6 and the requirements which fall into this set are REQ-ML-006, 007, 009, 020.  

● Requirements set #4: these requirements are related to declarative specifications used for 

specifying the ML applications. This requirement set addresses the challenges C and D 

mentioned in clause 6 and the requirements which fall into this set are REQ-ML-008, 010, 

011, 012, 013.  

● Requirements set #5: these requirements relate to the management of the architectural 

components. This requirement set addresses the challenge D mentioned in clause 6 and the 

requirements which fall into this set are REQ-ML-014, 015, 016, 017, 018.  

NOTE – Some requirements may be classified in two sets, e.g. 008. This is due to the fact that they 

contribute to both the sets of requirements. 

Table 1 provides high-level requirements for various aspects of the proposed high-level 

architecture. The corresponding classification of each requirement is listed under the relevant 

"classification" row. These requirements should be considered as a set of specifications for the 

corresponding features of the high-level architecture. 

Table 1 – High-level requirements 

REQ-ML-001 
The ML architecture is recommended to support correlation of data 

coming from multiple sources. 

Classification Requirements set #1: enablers for correlation 

Description 

In future networks, sources of data may be heterogeneous, integrated 

with different network functions (NFs), and may report different formats 

of data. These varied "perspectives" can provide rich insights upon 

correlated analysis. An architecture component to enable the ML 
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functionalities to collect and correlate data from these varied sources in 

the network is needed. 

Notes 

NOTE 1 – As an example, the analysis of data from User Equipment 

(UE), AN Access Network (AN), Core Network (CN) and Application 

Function (AF) is needed to predict potential issues related to quality of 

service (QoS) in end-to-end user flows. 

NOTE 2 – Other examples of such sources of data are self-optimizing 

network (SON) functionalities that monitor and correlate network alarms 

and key performance indicators (KPIs) [b-3GPP TS 28.554], and then 

take relevant action to clear alarms or enhance network KPIs, or give 

network design recommendations without human intervention. 

 

REQ-ML-002 

a) The ML architecture is required to support multiple technologies of 

future networks including IMT-2020 to achieve end-to-end user 

experience. 

b) The ML architecture is recommended to be interfaced with non-

IMT-2020 external functional entities to achieve end-to-end user 

experience. 

Classification Requirements set #1: enablers for correlation 

Description 

Future networks will have multiple technologies coexisting side by side, 

e.g., licensed and unlicensed wireless technologies, fixed mobile 

convergence (FMC) technologies, legacy and future technologies. The 

emergence of network slicing [ITU-T Y.3111] is one example in which 

vertical technologies (networks customized to provide flexible solutions 

for different market scenarios) and their integration into future networks 

are important. The interfacing of ML architecture with such functional 

entities will help in achieving KPIs as for example specified in [b-3GPP 

TS 28.554]. 

Thus, it is important for the ML architecture to be capable of integration 

with multiple underlying technologies and even support of application 

functions. 

Notes 

NOTE 1 – Vehicle-to-everything (V2X) is an example of a vertical 

application which may benefit from the support of network slicing.  

NOTE 2 – Various communication network (e.g. 3G, 4G, 5G) 

technologies could be considered as examples of underlying 

technologies. 

Applications for hosting in-car entertainment, processing data from 

drones, entertainment applications using AR/VR (Augmented 

Reality/Virtual Reality) are examples of application functions. 

NOTE 3 – Examples of network functions which are not directly 

managed by the NOP (Network Operator) are sensors, power circuits 

and different Internet of things (IoT) modules. In some use cases, the 

data from such network functions are utilized to control and monitor 

both the network functions deployed in the network as well as such 

external network functional entities themselves. These data could also be 

then used in various types of network parameter optimizations to 

achieve gains in coverage, capacity and quality by the NOP. 
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REQ-ML-003 
The ML architecture is required to support distributed instantiation of 

machine learning functionalities in multiple levels. 

Classification Requirements set #1: enablers for correlation 

Description 

Distributed instantiation helps in using data from different levels, to 

enrich locally available data in a level, as needed. Thus, the ML 

functionalities are required to be multi-level. 

The ML functionalities are said to be deployed across multiple levels 

when the reference points between the network entities in those 

deployments are defined in the underlying network architecture (e.g. 

ITU-T Y.3104) .  Further, independent instances of ML functionalities 

may be created in multiple levels.  

Notes 

NOTE 1 – In some use cases, the source of data may be placed in AN  

and pre-processed data are handled by CN [b-ITU-T Y.3102] where the 

ML model is hosted. 

NOTE 2 – ML functionalities may be used for performing mobile 

pattern predictions (MPPs) or slice configurations using input from the 

network at multiple levels (from sources in AN or CN). 

 

 

REQ-ML-004 

The ML architecture is recommended to define the points of interaction 

between ML functions and technology-specific underlay network 

functions, independently from functionalities of the machine learning 

application. 

Classification Requirements set #2: enablers for deployment 

Description 

The specification of ML applications in future networks will be related 

to the existing (or new) network services or network functions. Based on 

the specification of the ML applications, placement and characteristics 

of the ML functionalities are decided. The source of data and the target 

of ML output are points of tight integration with the technology-specific 

underlay NFs. Apart from this, ML functionalities may be generic and 

do not have tight integration with technology-specific NFs. Well-defined 

interface points between the ML functionalities and the technology-

specific underlay NFs are required. 

NOTE 1 - ML output may be policies or configurations to be applied in 

the network and target of ML output may be functions in the network for 

applying ML output. Such application of ML output may be controlled 

by network operator policies. 

Notes 

NOTE 2 – In some use cases, source of data and traffic classification 

(based on ML output) may be placed in the user plane of the network, 

e.g. User plane function (UPF). These may be considered as points of 

tight integration between the ML functionalities and the underlying 

network (e.g. AN or CN). Other ML functionalities (e.g., the ML model) 
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do not have such interface dependencies on the underlying networks. 

 

REQ-ML-005 

The ML architecture is required to support split or combined 

deployments of ML functionalities across different underlay network 

functions. 

Classification Requirements set #2: enablers for deployment 

Description 

In future networks, management and orchestration functions [ITU-T 

Y.3111] will optimize the location and the performance of NFs 

accordingly.  

To carry forward such benefits to ML applications, similar optimizations 

should also be applied to ML functionalities. Moreover, the constraints 

applicable to an ML functionality may be unique. 

Notes 

NOTE 1 – ML training may need a graphic processor unit (GPU) and 

may need to be done in an isolated environment so that it does not affect 

other functionalities of the network.  

NOTE 2 – As an example, depending on the latency budget, data 

availability and other considerations for ML applications, the ML 

functionalities could have the source of data and the ML training hosted 

in the CN or AN. 

 

REQ-ML-006 
The ML architecture is recommended to support an interface to transfer 

trained models among ML functionalities of multiple levels.  

Classification Requirements set #3: Interface-related 

Description 

Training of models has certain specific needs, e.g., availability of certain 

kinds of processors, availability of certain kinds of training data. Once 

the training is done, the ML model has to be sent to the technology-

specific underlay network that is hosting the ML model. Model training 

can be done separately from the live network. Thus, sending trained 

models across multiple levels is an important requirement. 

Notes 

NOTE 1 – UE, Access Network functions, Core Network functions 

could be treated as examples of technology-specific underlying network 

functions which could host the trained model. 

NOTE 2 – CN and AN could be treated as examples of multiple levels. 

NOTE 3 – Depending on the availability of data, learning may be done 

at the CN or AN, and trained model (e.g. classifier) hosted by the 
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transport networks. 

 

REQ-ML-007 

The ML architecture is required to support an interface to transfer data 

for training or testing models among ML functionalities of multiple 

levels. 

Classification Requirements set #3: Interface-related 

Description 

Certain levels in which the data are available may not have the training 

capabilities. In such cases, there may be a need to send data for training 

or testing to levels where the capacity for such operations is available.  

Notes 

NOTE 1 – ANs may be considered as examples of resource-constrained 

networks, whereas CNs may be considered as a level where capacity 

may be available to scale. 

NOTE 2 – Data pre-processing may be done at the transport network 

and the pre-processed  data is then sent to the model at the CN for 

training. 

 

REQ-ML-008 

The ML architecture is required to support flexible placement of ML 

functionalities (in coordination with the management and orchestration 

functions) in the underlying network functions. 

 

Classification 
Requirements set #4: Declarative specification; Requirements set #2: 

enablers for deployment 

Description 

The flexible placement ML functionalities could be based, among other 

factors, on the specifications of ML applications.  

The Management and Orchestration functions utilize both the 

specifications of the ML applications and the conditions in the network 

to implement this requirement. 

Resource allocation for ML functionalities is required to consider 

various constraints (e.g., resource constraints of the NFs, latency 

constraints specific to the ML application, availability of data that is 

specific to the ML application, data transformation capabilities, 

performance constraints, training capabilities and model characteristics). 

The ML architecture should provide the ability to place the ML 

functionalities in a flexible manner in the network that is most optimal 

for the performance of the ML applications and based on the constraints 

defined in the declarative specifications of the ML applications. 

The constraints for online training and prediction for real-time ML 

applications which are captured in the specification form inputs to 

placing the ML functionalities in the network that can provide optimal 

performance for the use case. 

Notes 
NOTE 1 – If the ML model includes a neural network, then a placement 

decision in a GPU-based system is desirable. 
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NOTE 2 – Based on the requirements of the ML applications, the ML 

functionalities which provide latency sensitive short-term predictions 

may be hosted closer to the edge. The placement may also be influenced 

by considerations on data availability. This may be done in coordination 

with the split of ML functionalities mentioned in REQ-ML-005. 

NOTE 3 – In certain use cases, user plane data classification may be 

done using ML models. Since user plane data classification is a latency-

sensitive application, the model may be hosted at the transport network, 

whereas the training could be done at CN. 

 

REQ-ML-009 

a) While defining the interface with underlying networks, the ML 

architecture is recommended to utilize existing standard protocols 

wherever possible, with required extensions wherever needed. 

b) The ML architecture is recommended to support specific interfaces 

or APIs (Application Programming Interface) for interfacing with 

technology-specific network functions, for sourcing data from such 

NF or for configuring such NFs. 

c) The ML architecture is recommended to support logical interfaces 

between ML functionalities which can be hosted in multiple levels, 

and the realization of such logical interfaces be implemented 

according to deployment scenarios.  

Classification Requirements set #3: Interface-related 

Description 

Sources of data and target for ML output may need specific interfaces or 

APIs with the underlay networks to extract data or apply configurations. 

Some use cases may need a tight coupling at integration stage between 

the source and target of ML functionalities, and the NFs. In certain 

cases, an extension of such interfaces may be needed to achieve the ML 

functionalities in the use case. 

The ML functionalities may use interfaces provided by an underlying 

network as a source of data or target of configurations. In that sense, 

these network specific APIs may act as realizations of an interface to the 

source and target of ML functionalities. 

Notes 

NOTE 1 – With respect to item a above, certain interfaces may be 

realized by reusing existing protocols (e.g., Radio Resource Control 

(RRC) [ITU-T Y.3104], MEC [b-ETSI MEC 003], management service 

(MnS) [b-3GPP TS 23.501]). 

NOTE 2 – With respect to item b above, for example, a source running 

in the UE may use specific APIs to extract data from a voice over long-

term evolution (VoLTE) client. 

NOTE 3 – With respect to item c above, for example, in the use case 

where the source runs in the AN but needs measurements from the UE, 

the AN needs to configure the UE for this measurement using RRC. 
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REQ-ML-010 

The ML architecture is required to support a standard method to 

represent the ML application, which can be translated into ML 

functionalities in technology-specific underlay network functions. 

Classification Requirements set #4: Declarative specification 

Description 

Automation using declarative specification and corresponding 

translation into configurations is a characteristic of future networks. 

Extending this technique to ML, declarative specification of ML 

application and correspondingly translate that into configurations of ML 

functionalities need to  be supported.  

Notes 

Interpretation of the declarative specification allows configuration of 

ML functionalities in the network by translating the specification into 

the configuration that can be hosted by network functions. 

 

REQ-ML-011 

a) The ML architecture is required to support ML applications to 

specify the sources of data, repositories of ML models, targets for 

output from ML models, and constraints on network resources.  

b) The ML architecture is required to support the time constraints 

requirements of  ML applications. 

Classification Requirements set #4: Declarative specification 

Description 

The separation between technology agnostic part of the ML application 

and technology-specific deployment is captured in the design time of 

future network services. Declarative specifications for the ML 

applications achieve this separation.  

Different ML applications have varied time constraints. These 

constraints form an important input to the management and orchestration 

functions while determining the placement, chaining and monitoring of 

the ML functionalities. 

Notes 

NOTE 1 – With respect to item a above, as an example, a description 

written in a metalanguage may capture the requirements of a network 

operator for an ML application. The management and orchestration 

functions may translate it into the configuration that can be implemented 

in the network. 

NOTE 2 – With respect to item b above, at the tightest scale, the 

application of ML in beamforming, scheduling, link adaptation network 

functionalities would have latency criteria of the order of microseconds, 

whereas transport and core network functionalities  have a few 

milliseconds of latency criteria. The least demanding in terms of latency 

are management level functionalities, e.g., anomaly detection and 

coverage hole detection, that can afford minutes, hours or days of 

latency. 
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REQ-ML-012 
The ML architecture is required to support flexible split of ML 

functionalities based on the specifications of ML applications. 

Classification Requirements set #4: Declarative specification 

Description 

Specification of ML application is an important input for deployment of 

ML in future networks including IMT-2020. But network capabilities 

can change (hardware can be added or removed), NFs may be scheduled 

or (re)configured dynamically by the management and orchestration 

functions. These dynamic changes may necessitate a change in the split 

and placement of the ML functionalities (e.g., a decision may be taken to 

collocate certain functions of ML, based on changes in the link capacity, 

or a decision may be taken to add a new source of data based on 

decisions of the management and orchestration functions). Thus, a 

combination of (a) inputs from specification, (b) the requirement of ML 

functions to be capable of split and combined deployment and (c) 

coordination with the underlying management and orchestration 

function, is needed.  

Notes 
NOTE 1 – A new source of data may be instantiated based on scale out 

decisions in the network. 

 

REQ-ML-013 

The ML architecture is required to support the specifications of ML 

applications by third parties to specify the sources of data, repositories of 

ML models, targets for output from ML models, and constraints on 

network resources.  

Classification Requirements set #4: Declarative specification 

Description 

Third party service providers may offer innovative services on top of 

future networks. This may include new ML algorithms. A collaboration 

between third party providers and network operators may bring new 

sources of data or aggregation capabilities. The declarative process in 

the architecture should extend the capabilities to include third parties, 

and they should be able to include these functionalities in the 

specification so that end users can benefit from such innovative services 

offered by third party providers. 

Notes 

NOTE 1 – In some use cases, ML models may be provided as third-party 

applications.  

NOTE 2 – A smartphone application which interfaces with the sensors 

on the UE is an example of a third-party source of data. 

NOTE 3 – A third-party voice over IP service provider wants to 

optimize call quality over the network by running an ML application that 

configures network parameters.  

 



- 15 - 

SG13-TD180/PLEN 

 

 

REQ-ML-014 
The ML architecture is required to support ML model selection at the 

setup time of the ML functionalities. 

Classification Requirements set #5: Management of ML functionalities 

Description 

Advances in machine learning suggest that in future networks there 

would be ML models with varied characteristics (e.g., using a variety of 

optimization techniques and weights) that are appropriate for different 

problem spaces and data characteristics. 

In future networks, new sources of data may get added dynamically.  To 

extend the ML applications to such new and heterogeneous sources of 

data, ML model selection has to be done dynamically, based on the data 

provided by the sources. 

Notes 

NOTE 1 – Plug and play of new network functions (e.g. new UPF) into 

a live network may be an example for dynamic onboarding of new 

sources of data.  

 

REQ-ML-015 
The ML architecture is required to support ML model training and 

model updates while preventing impact on the network.  

Classification Requirements set #5: Management of ML functionalities 

Description 

ML model training has several considerations: use of specific hardware 

for speed, availability of data, parameter optimizations, avoiding bias, 

distribution of training, etc. 

Moreover, in future networks, service disruptions should be avoided 

while model training and updates are performed. 

Notes  

 

REQ-ML-016 

The ML architecture is required to support capabilities to monitor the 

network operations based on the effect of ML and to update the ML 

models and/or policies without impacting the network. 

Classification Requirements set #5: Management of ML functionalities 

Description 

The effect of ML on the network needs to be monitored. Various KPIs 

are measured constantly and the impact of machine learning on them as 

well as on the ML functionalities themselves need to be monitored and 

corrected if needed, continuously.  ML functionalities need to be trained 

for future recognition and handling such corrected scenarios. 
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Notes 

NOTE 1 – Continuous improvement of the automated fault recovery 

process workflows is an example. The root cause analysis (RCA) from 

the fault recovery process is provided for configuring the management 

and orchestration functions, and also the effect produced by ML in the 

network is evaluated and used to optimize the ML functionalities 

themselves. 

 

REQ-ML-017 
The ML architecture is required to support an orchestration functionality 

to monitor and manage all the ML functionalities in the network. 

Classification Requirements set #5: Management of ML functionalities 

Description 

The performance of the ML functionalities in the network is monitored 

and when the performance falls below a predefined threshold, the ML 

functionalities are reconfigured to improve it. 

The varied sources of data (e.g. CN, AN) imply that there could be 

various training techniques including distributed training. Complex 

models may be trained using varied data. The performance of such 

models can be determined and compared in an isolated environment. 

Based on such comparisons, network operators can then select the 

appropriate ML functionalities (based on internal policies) for specific 

ML applications.  

NOTE 1 – Evaluation involves evaluation of network performance along 

with performance of ML algorithms. 

Notes 
NOTE 2 – Reselection of ML model is an example of reconfiguration 

done to improve the performance of the ML functionalities. 

 

REQ-ML-018 
The ML architecture is required to support flexible chaining of ML 

functionalities including multi-level chaining. 

Classification Requirements set #5: Management of ML functionalities 

Description 

Flexible chaining of ML functionalities is required to be done based on 

the hosting and positioning on different NFs and levels. This is to enable 

the hybrid or distributed ML functionalities. 

Chaining of ML functionalities may be used to build a complex ML 

functionality. 

Management and orchestration functions provide NOPs with capabilities 

to rapidly design, develop and deploy network services in the 

technology-specific underlay networks. Similarly, ML functionalities in 

the network need mechanisms including flexible chaining to keep up 

with innovation in the technology-specific underlay networks. As 

underlying network services evolve and deploy rapidly, so do the ML 

functionalities on top of them, using flexible chaining techniques. This 
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requirement aims to give the ML functionalities, the ability to adapt to 

dynamic service creation and orchestration in the underlying networks. 

Notes  

 

REQ-ML-019 
The ML architecture is required to support plugging in and out new data 

sources or configuration targets to a running ML environment. 

Classification Requirements set #2: enablers for deployment, enablers for correlation 

Description 

Certain advanced applications  in future networks, e.g., massive Internet 

of things (mIoT), require handling of unstructured data from a huge 

number of data sources that may be plug and play. One such use case is 

the analysis of logged data for anomaly detection in networks.  

Notes 

NOTE 1 – Scaling of ML functionalities based on type and volume of 

incoming data is an example of handling new data sources. 

NOTE 2 - The configuration of ML functionalities in the network needs 

to handle the plugging in and out of new data sources or configuration 

targets based on metadata of data sources.   

 

REQ-ML-020 
The ML architecture is recommended to support data sharing between 

ML functionalities using distributed data sharing mechanisms. 

Classification Requirements set #3: Interface-related 

Description 
Cross-level sharing of data is needed to enable correlated ML decisions 

in future networks.  

Notes 
NOTE 1 - Concepts like data lakes are emerging in future clouds and 

can also be exploited in network operators’ clouds.  

8 Framework of the high-level architecture  

The framework of the high-level architecture described in this clause supports the requirements 

defined in Clause 7.  

This clause provides description of the high-level architectural components and the high-level 

architecture itself, and provides guidelines for realization of the high-level architecture on different 

technology-specific underlay networks.  

This approach to design the architecture provides an ability to analyse both ML solutions which are 

agnostic to technology specific underlying networks and issues specific to integration of ML to such 

underlay networks. Examples of the application of this architectural framework in different 

technology specific underlay networks are provided in Appendix I.  
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8.1 High-level architectural components 

This section specifies the high-level architectural components which are essential parts of the 

architectural framework. Integration of such components to a network architecture by interfacing 

with the NFs, along with the placement of the ML functionalities in such a network, forms the 

architecture framework.  

 

Figure 3 – High-level architectural components 

 

The high-level architectural components include the following: 

1) machine learning pipeline, as defined in Clause 3, is a set of logical nodes, each with 

specific functionalities, that can be combined to form a machine learning application in a 

telecommunication network.  

The following describes the nodes in the ML pipeline.  

• SRC (source): This node is the source of data that can be used as input to the ML 

pipeline.  

NOTE 1 – Potential SRC nodes include user equipment (UE), session management 

function (SMF) [ITU-T Y.3104], and application function (AF) [ITU-T Y.3104]. 

• C (collector): This node is responsible for collecting data from one or more SRC nodes.  

NOTE 2 – It may have the capability to configure SRC nodes. For example, the radio 

resource control (RRC) protocol [b-3GPP TS 23.501] can be used to configure user 

equipment (UE) acting as SRC node. It may use vendor specific operations, 

administration and maintenance (OAM) protocols to configure an SMF acting as an 
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SRC node. Such configurations may be used to control the nature of data, its granularity 

and periodicity while it is generated from the SRC. 

• PP (pre-processor): This node is responsible for cleaning data, aggregating data or 

performing any other pre-processing needed for the data to be in a suitable form so that 

the ML model can consume it. 

• M (model): This is a deployable ML model.  

NOTE 3 – Example could be a ML algorithm implemented in software as a NF [ITU-T 

Y.3104].  

• P (policy): This node enables the application of policies to the output of the model node.  

NOTE 4 – This node can be used to minimize impacts when the output of machine 

learning is applied to a live network. Specific rules can be put in place by an network 

operator to safeguard the sanity of the network, e.g., major upgrades may be done only 

at night time or when data traffic in the network is less. 

• D (distributor): This node is responsible for identifying the SINK(s) and distributing the 

output of the M node to the corresponding SINK nodes.  

NOTE 5 – It may have the capability to configure SINK nodes. RRC protocol may be 

used to configure a UE acting as a SINK node. 

• SINK: This node is the target of the ML output, on which it takes action. 

NOTE 6 – For example, a UE acting as a SINK node may adjust the periodicity of 

channel measurement based on ML output. 

 

2) machine learning function orchestrator (MLFO): as defined in Clause 3, a functionality 

that manages and orchestrates the nodes of ML pipelines based on ML intent and/or dynamic 

conditions.  

NOTE 1 – MLFO selects and reselects the ML model based on, e.g. its performance.  

NOTE 2 – The placement of the ML pipeline nodes, based on the corresponding capabilities 

and constraints of the use case, is the responsibility of the MLFO.   

NOTE 3 – MLFO also provides chaining functionality, i.e., connecting ML nodes together to 

form a ML pipeline. For example, chaining can be used to connect an SRC node instantiated in 

the access network with collector and PP nodes instantiated in the core network. The chain 

itself is declared in the use case specification and its technology-specific implementation in the 

network is done by the MLFO. The MLFO determines the chaining considering the constraints 

(e.g., timing constraints for prediction). 

NOTE 4 – ML intent is a declarative description which is used to specify a machine learning 

application. ML intent does not specify any technology-specific network functions to be used in 

the ML application and provides a basis for mapping ML use cases to diverse technology-

specific instantiations. ML intent can use a meta language specific for machine learning to 

define ML applications. 

3) ML sandbox: this is an isolated domain which allows hosting of separate ML pipelines to 

train, test and evaluate them before deploying them in the live network. An ML sandbox can 

host a simulator to generate data needed for training or testing, in addition to utilizing data 

derived from the network. 

 

In addition to the above architecture components, the following supporting aspects of the 

architecture are to be noted: 
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o Service-based architecture (SBA) [b-ETSI TS 129 500] may be used to provide interfaces 

between ML functionalities and underlying networks. Similarly, for the ML pipeline in 

sandbox, SBA may be used to interface the ML functionalities with the simulator.  

This provides a uniform interface towards the ML overlay for NFs and the simulator, alike.  

SBA is also used to manage the ML functionalities by the MLFO.  

o Data handling interface is the interface defined in coordination with the ML underlay 

networks. The impacts to the source of data and target of configurations (as a result of ML 

pipeline execution) are localized by this interface.  

NOTE 1 - Extensions of existing protocols are used to minimise the architectural impacts to 

the underlay. 

NOTE 2 - The data handling interface needs to support non-SBA protocols in case the 

network functions in the ML underlay networks are not SBA-capable.  

With reference to figure 3, the arrows 2 and 3 show the paths for generated data from the 

ML underlay networks and the simulator respectively. The arrows 1 and 4 show the paths 

for configuration of the target based on ML output. 

Appendix II provides the mapping of the architectural components and supporting aspects to the 

requirements in Clause 8. 

8.2 High-level architecture 

The high-level architecture shown in Figure 4 is derived from the high-level requirements specified 

in Clause 7 and builds upon the architectural components and architecture supporting aspects 

described in Clause 8.1.  

 

Figure 4 – High-level architecture 

Interface legend 

1,2:  Data handling interface for Simulator. 

3:  Interface between ML Sandbox and ML pipeline subsystems. 

4.5: Data handling interface for ML underlay networks. 

https://wiki.edgexfoundry.org/display/FA/Introduction%20+to+EdgeX+Foundry.
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6,7:  Management and orchestration interface for ML pipeline and ML sandbox respectively. 

8:  Interface between MLFO and Management and Orchestration functions of the underlay 

networks. 

9,10:  Multi-level interface between ML pipeline nodes. 

 

The three main building blocks of the high-level architecture in Figure 4 are: 

• Management subsystem: This sub-system provides the management and orchestration functions 

defined in [ITU T Y.3111]. In addition, it provides the MLFO functionality.   

The management subsystem enables to extend the management and orchestration mechanisms 

used for IMT-2020 and future networks to ML pipeline nodes. This brings uniformity to the 

management of ML functionalities and NFs.  

The MLFO works in coordination with the other functions of the management sub-system to 

manage the ML pipeline nodes.  

NOTE 1 - The interfaces between the functions of the management sub-system and NFs in the 

ML underlay networks comply with the interface specifications as defined in [ITU T Y.3111].  

NOTE 2 - The interaction between MLFO and the other functions of the management sub-

system may be achieved using service-based architecture (SBA). 

• ML pipeline subsystem: The ML pipeline is a logical pipeline that can be overlaid on existing 

network infrastructures. It uses the services of the MLFO for instantiation and setup. Integration 

aspects of such an overlay of a ML pipeline on a specific technology ML underlay networks may 

require extension of existing interfaces or definition of specific APIs.  

In addition, the following points are to be noted: 

− SBA may be used for interfacing between NFs and ML pipeline nodes as well as between 

ML pipeline nodes themselves. The SRC exposes interfaces for consuming data from the 

NFs and producing data towards the collector (C). The SINK exposes interfaces for 

consuming the ML output from the distributor (D) and produces such configurations to the 

NFs which it interfaces with.  

NOTE 3 – Due to the heterogeneity of NFs and ML underlay networks, SBA may not be 

supported by NFs in the ML underlay networks. In such cases, APIs or interfaces specific to 

those ML underlay networks are used between the ML pipeline nodes and the NFs. 

− The placement and chaining of the ML pipeline nodes are controlled by the MLFO and this 

control may be influenced by factors such as:  

▪ Inputs from the ML Intent to the MLFO which may give constraints on the placement of 

ML pipeline nodes.  

NOTE 4 – The requirement to place a ML model (M) on a network computing resource 

which provides a specific type of acceleration capability is an example of constraints on 

the placement of M. 

▪ Feedback received by the MLFO from the management and orchestration functions of the 

ML underlay networks or from the ML pipeline nodes may provide inputs on the 

placement and chaining of ML pipeline nodes.  

NOTE 5 – Decoupling of the location of the ML pipeline nodes from their functionalities, 

except in the case of performance constraints, is achieved using the placement and chaining 

mechanisms. 

− The deployment of a ML pipeline in future networks including IMT-2020 may span different 

levels (including third party applications). In this case, a multi-level interface between nodes 

of a ML pipeline is used that allows the ML pipeline to be distributed across levels.  
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NOTE 6 – As an example, as shown in figure 4, a ML pipeline is distributed over multiple 

level (a specific deployment may for example distribute the pipeline across UE, AN and CN). 

Based on the specific ML application, different ways of distributing the ML pipeline nodes 

are possible. 

• ML sandbox subsystem: A ML sandbox allows ML pipelines to adapt to dynamic network 

environments such as those of future networks including IMT-2020 where a variety of conditions 

may change (e.g., air interface conditions, UE position, network capabilities and resources). The 

ML sandbox subsystem includes a simulator and is monitored by the MLFO according to the 

specifications in the ML Intents. The simulation environment allows network operators to study 

the effect of ML outputs before deploying them on ML underlay networks. Feedbacks from the 

management and orchestration functions are provided to the ML sandbox subsystem so that the 

ML pipelines can adapt to the dynamically changing network environments.  

The following points are to be noted:  

− The interfaces between the ML pipeline subsystem and the ML sandbox subsystem allow the 

ML pipelines to interface with the ML sandbox for training and update of ML models. 

− Data from the ML underlying networks may be used in conjunction with the data from the 

simulator to train the ML models in the ML sandbox subsystem. 

− The management of the ML pipeline nodes in the ML sandbox subsystem is also controlled 

by the MLFO. This allows the MLFO to train and select the ML model(s) for a given ML 

application. 

8.3 General guidelines for realization of the high-level architecture 

General guidelines for realization of the high-level architecture on different technology-specific 

underlay networks are as follows: 

• Instantiation of the ML pipeline nodes: an ML application is described using ML Intent. The 

flow of information in an ML application can be represented by the chaining in an ML pipeline. 

The data from various source nodes, e.g. coming from various underlying networks, need to be 

gathered (by a collector node) and pre-processed (by a pre-processor node) before feeding these 

data to the ML model (model node). The output of the ML model is then used to apply policies 

(by a policy node) that will be implemented (by a SINK node).  

An ML application can be realized by instantiating nodes of the ML pipeline with specific roles 

(e.g., SRC, C, SINK), and associating these nodes to the technology specific underlying 

network functions, based on the corresponding requirements of the ML application and the 

capabilities of the underlying network functions.  

The instantiation is performed by the MLFO in coordination with the management and 

orchestration functions. 

• ML application interfacing with underlying network functions: there are two points of specific 

interfacing with the underlying network functions for a ML application - the SRC and the SINK 

nodes. The SRC nodes will have either an SBA based interface to the associated NFs which 

produce data or a technology-specific interface for non-SBA capable NFs. Similarly, the SINK 

nodes will have an SBA based interface to the associated NFs which enforce the output policies 

or a technology-specific interface for non-SBA capable NFs.  

• Management of the ML pipeline: this is done by the MLFO in coordination with the 

management and orchestration functions of the underlying networks. 

• ML model training and evaluation in the ML sandbox: this is controlled by the MLFO 

independently of the underlying networks. The interface between the ML sandbox sub-system 

and the ML pipeline subsystem is used to transfer trained ML models, data for training and ML 
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model updates between the ML sandbox and the underlying networks which host the ML 

pipeline. 

Appendix I gives examples of applying the above guidelines to the realization of the high-level 

architecture on technology-specific underlay networks. 

9. Security considerations 

This Recommendation describes the architectural framework of machine learning which is expected 

to be applied to future networks including IMT-2020 networks: therefore, general network security 

requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-T 

3101].  

It is required to prevent from unauthorized access to, and data leaking from, a ML pipeline, whether 

or not they have a malicious intention, with implementation of mechanisms regarding 

authentication and authorization and external attack protection etc. 
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Appendix I: Examples of realization of the high-level  architecture on technology-specific 

underlay networks 

(This appendix does not form an integral part of this Recommendation.) 

 

Figure 5 gives an example of realization of the high-level architecture on an IMT-2020 network 

[ITU-T Y.3104] [ITU-T Y.3111].  

 

 

Figure 5 – Example of realization of the high-level architecture in an IMT- 2020 network 

This example of realization is represented in the following manner: the ML pipeline shows the 

positions in this realization wherever the nodes in the ML pipeline can be hosted, e.g., CN, AN, UE 

or management functions. For example, the pipeline represented by arrows 1→2→4→ML pipeline 

2 uses inputs from UE to make predictions at CN (e.g., MPP-based ML applications). 

NOTE - The sandbox subsystem is not shown in figure 5, but its functionality is applicable also in 

figure 5. 

  

• Examples of realization in support of Requirements set #1 and Requirements set #2:  

– Consider arrows 5→4→ML pipeline 2→6: this pipeline uses inputs from CN and possibly a 

combination of UE inputs to make predictions at CN and applies it to the management 

functions. This application of ML output can in turn affect configurations in different levels 

(e.g., SON decisions made at CN or closed loop decisions on resource allocations done in the 

network). 

- Consider arrows 1→3→ML pipeline 1→7: this pipeline uses inputs from UE and hosts the 

ML model in AN for latency sensitive decisions to be applied in AN itself. 

• Examples of realization in support of Requirements set #3: 

– Consider arrow 1: this can be realized using RRC. 

– Consider arrows 2, 3, 4, 5, 7: this can be realized as an extension of service interfaces in CN 

[ITU-T Y.3104]. 

– Consider arrow 6: this can be realized via reuse of management function interfaces defined 

in [ITU-T Y.3111]. 

• Examples of realization in support of Requirements set #4: 
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– UE is a resource-constrained device, hence only the SRC is instantiated in UE. This 

constraint is specified in the ML intent. 

• Examples of realization in support of Requirements set #5: 

– The collectors in AN and CN are placed by the MLFO based on the specifications of the ML 

applications in the ML intent. For latency sensitive applications in AN, ML pipeline 1 is 

used. ML pipeline 2 is used for latency tolerant use cases. The chaining is done according to 

these requirements specified in the ML intent. 

 

 

  



- 26 - 

SG13-TD180/PLEN 

 

Appendix II: Mapping of the architectural components and supporting aspects to the 

requirements in Clause 8 

 (This appendix does not form an integral part of this Recommendation.) 

 

Table 2 provides the mapping of the architectural components and supporting aspects to the 

requirements in Clause 8. 

Table 2 – Mapping of architectural aspects to the requirements 

Architectural aspects Requirements Mapping explanation 

ML pipeline nodes Requirements set #1 

Requirements set #2 

The ML pipeline provides a common 

vocabulary for ML on IMT-2020 and future 

networks. By defining these nodes, it 

becomes possible to consider the evolution of 

ML separately from the underlay networks.  

Instantiation of these nodes form an 

important part of deployment of ML overlay 

on different underlay networks. The functions 

of these nodes are defined independently of 

their location in the network, and hence this 

allows flexible placement of such nodes in 

the network. Split, merge and chaining of ML 

pipeline nodes allows to deploy complex 

functions from these basic nodes. 

MLFO Requirements set #5, 

Requirements set #4, 

Requirements set #2 

This component orchestrates and manages 

the ML pipeline nodes. It is also responsible 

for optimal placement and chaining of ML 

pipeline nodes in the network. It implements 

these functions in coordination with the 

management and orchestration functions. The 

declarative specifications of the ML 

applications are supported by the MLFO by 

converting them into underlay-specific 

deployments. It also selects the models and 

reselects them based on the needs of the ML 

applications and other constraints defined in 

the ML Intent. 

ML Sandbox Requirements set #5 This component provides the ability to train, 

evaluate and monitor the performance of ML 

models before deploying them in a real 

network. It interfaces with the underlay 

networks for transfer of data or trained 

models. In addition, it hosts the simulator 

which may generate data required for training 
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the ML models. 

ML Intent Requirements set #4 Written in a metalanguage, this architectural 

supporting aspect defines the ML application, 

its needs in terms of data input, configuration 

output, any other constraints or 

characteristics. It is used as input towards the 

functionalities of the MLFO. This is the input 

for MLFO to create a deployable ML 

pipeline (one which conforms to the 

requirements) on specific underlay networks. 

By standardizing this component, it is 

possible for 3rd party solution providers to 

integrate with the ML pipeline. 

SBA Requirements set #3 This architectural supporting aspect is used to 

interface between the underlay network 

functions and the ML pipeline. It provides the 

necessary loose coupling between the ML 

overlay and the ML underlay. SBA is also 

used to interface between the simulator and 

the ML pipeline. It is used to train the ML 

pipeline and to configure the simulator using 

the ML pipeline. 
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