

Draft new Recommendation ITU-T Y.IMT2020-ML-Arch

Architectural framework for machine learning in future networks including

IMT-2020

Summary

This document specifies an architectural framework for machine learning (ML) in future networks

including IMT-2020. A set of architectural requirements and specific architectural components

needed to satisfy these requirements are presented. These components include, but are not limited

to, ML pipeline and ML management and orchestration functionalities. The integration of such

components into future networks including IMT-2020 and guidelines for applying this architectural

framework in a variety of technology-specific underlying networks are also described.

Keywords

architectural framework, IMT-2020, high-level architecture, machine learning, ML, overlay,

pipeline, requirements, training.

- 2 -

SG13-TD180/PLEN

Table of Contents

1 Scope 3

2 References 3

3 Definitions 3

3.1 Terms defined elsewhere 3

3.2 Terms defined in this document 3

4 Abbreviations and acronyms 4

5 Conventions 5

6 Introduction 6

7 High-level architectural requirements 7

8 Framework of the high-level architecture 17

8.1 High-level architectural components 18

8.2 High-level architecture 20

8.3 General guidelines for realization of the high-level architecture 22

9. Security considerations 23

Appendix I: Examples of realization of the high-level architecture on technology-specific underlay

networks 24

Appendix II: Mapping of the architectural components and supporting aspects to the requirements

in Clause 8 26

Bibliography 28

- 3 -

SG13-TD180/PLEN

Draft new Recommendation ITU-T Y.IMT2020-ML-Arch

Architectural framework for machine learning in future networks including

IMT-2020

1 Scope

This Recommendation specifies an architectural framework for machine learning in future networks

including IMT-2020.

A set of architectural requirements is presented, which in turn leads to specific architectural

components needed to satisfy these requirements. This Recommendation also describes an

architectural framework for integration of such components into future networks including IMT-

2020 and guidelines for applying this architectural framework in a variety of technology-specific

underlying networks.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.3100] ITU T Recommendation Y.3100 (2017), “Terms and definitions for IMT-2020

network”

[ITU-T Y.3104] ITU T Recommendation Y.3104 (2018), “Architecture of the IMT-2020

network”

[ITU-T Y.3110] ITU T Recommendation Y.3110 (2017), “IMT-2020 network management and

orchestration requirements”

[ITU-T Y.3111] ITU T Recommendation Y.3111 (2017), “IMT-2020 network management and

orchestration framework”

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

None

3.2 Terms defined in this document

This Recommendation defines the following terms:

3.2.1 machine learning (ML): processes that enable computational systems to understand data

and gain knowledge from it without necessarily being explicitly programmed.

NOTE - Definition adapted from [b-ETSI GR ENI 004].

- 4 -

SG13-TD180/PLEN

3.2.2 machine learning function orchestrator (MLFO): a logical orchestrator that can monitor

and manage the nodes in a machine learning pipeline.

3.2.3 machine learning pipeline: a set of logical nodes, each with specific functionalities, that

can be combined to form a machine learning application in a telecommunication network.

NOTE – The nodes are entities that are managed in a standard manner and can be hosted in a

variety of network functions.

3.2.4 machine learning sandbox: an environment in which machine learning models can be

trained, verified and their effects on the network analysed.

 NOTE – A machine learning sandbox is designed to prevent a machine learning application

from affecting the network, or to restrict the usage of certain machine learning

functionalities.

3.2.5 machine learning model: model created by applying machine learning techniques with data

to learn from.

NOTE 1 – A machine learning model is used to generate predictions on new (untrained)

data.

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the

form of a software or hardware component.

NOTE 3 – Machine learning techniques include learning algorithms (e.g. learning the

function that maps input data attributes to output data).

3.2.6 machine learning overlay: a loosely coupled deployment model of machine learning

functionalities where the integration and management of machine learning functionalities,

building on a number of network functions of underlying communication networks, are

standardized.

NOTE – The integration and management of different implementations of both machine

learning functionalities and network functions is enabled by such a standardization.

Interdependencies between the two are minimized using standard interfaces, allowing for

parallel evolution of functionalities of the two.

3.2.6 machine learning underlay network: a telecommunication network and its related network

functions which interfaces with corresponding ML overlays.

NOTE – An IMT-2020 network is an example of underlay network.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AF Application Function

AN Access Network

API Application Programming Interface

AR/VR Augmented Reality/Virtual Reality

C Collector (ML pipeline)

CN Core Network

EMS Element Management System

FMC Fixed Mobile Convergence

- 5 -

SG13-TD180/PLEN

GPU Graphic Processor Unit

IoT Internet of Things

KPI Key Performance Indicator

M Model (ML pipeline)

mIoT massive Internet of Things

MEC Multi-access Edge Computing

ML Machine Learning

MLFO Machine Learning Function Orchestrator

MPP Mobility Pattern Prediction

MnS Management Service

NF Network Function

NOP Network Operator

OAM Operations, Administration and Maintenance

P Policy (ML pipeline)

PP Pre-processor (ML pipeline)

QoS Quality of Service

RCA Root Cause Analysis

RRC Radio Resource Control

SBA Service-Based Architecture

SMF Session Management Function

SON Self-Optimizing Network

SRC source

UE User Equipment

UPF User Plane Function

V2X Vehicle-to-everything

VoLTE Voice over Long-Term Evolution

5 Conventions

In this Recommendation, requirements are classified as follows:

The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted if conformance to this Recommendation is to be

claimed.

The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus, this requirement need not be present to claim

conformance.

The keywords "can optionally" indicate an optional requirement which is permissible,

without implying any sense of being recommended. This term is not intended to imply that

the vendor's implementation must provide the option and the feature can be optionally

- 6 -

SG13-TD180/PLEN

enabled by the network operator/service provider. Rather, it means the vendor may

optionally provide the feature and still claim conformance with the specification.

In the body of this Recommendation and its annexes, the words shall, shall not, should, and

may sometimes appear, in which case they are to be interpreted, respectively, as is required

to, is prohibited from, is recommended, and can optionally. The appearance of such phrases

or keywords in an appendix or in material explicitly marked as informative is to be

interpreted as having no normative intent.

ML pipeline – When the symbol shown in Figure 1 below is used, this denotes a subset (including

proper subset) of nodes in a ML pipeline. When this symbol is used in a figure, the symbol stands

for the subset of a ML pipeline’s nodes not explicitly shown in that figure.

Figure 1 - Symbol used to denote the ML pipeline

Service egress and ingress points of ML pipeline nodes – The nodes in a ML pipeline use Service

Based Architecture (SBA) [b-ETSI TS 129 500] to communicate with technology-specific underlay

networks and the MLFO (machine learning function orchestrator). This is denoted by the symbol in

figure 2.

Figure 2 - Symbol used to denote the service egress and ingress points of the ML pipeline

nodes

6 Introduction

Machine learning (ML) provides a way to teach computational system to learn knowledge using data

without necessarily being explicitly programmed in order to realize complicated tasks such as

characteristic detection or behaviour prediction. As ML becomes an important technical trend in the

industry, network operators and various stakeholders are searching for cost-effective ways to

incorporate ML into the future networks including IMT-2020.

While the benefits from such an integration have been discussed under many use cases (e.g.,
troubleshooting of network problems, network traffic prediction, traffic optimization adjustment,

network security auditing [b-ITU Y.3650] [b-ITU Y.3170]), there are many challenges to such an

integration. Some of the important challenges are:

A. Heterogeneous nature of ML functionalities and unique characteristics of various future

communication technologies impose a varied set of requirements for integration.

B. Roadmaps for evolution of these ML functionalities and communication networks are not

aligned.

C. Cost of integration, in terms of architecture impacts, is an important consideration.

D. Disparate management mechanisms for ML functionalities and network functions will

disrupt the operations management of communication networks.

An architectural framework for integration of ML with future networks including IMT-2020 is

needed to address these challenges.

https://wiki.edgexfoundry.org/display/FA/Introduction%20+to+EdgeX+Foundry.

- 7 -

SG13-TD180/PLEN

Building on high-level architectural requirements, such a framework can at first provide a common

vocabulary and nomenclature for ML functionalities and their relationships with the communication

networks.

Then, it can specify the interface points with future networks including IMT- 2020 which enable

loosely coupled integration with ML functionalities.

Management mechanisms for ML are described in the framework in alignment with the existing

management principles which have been identified in IMT-2020 networks.

The realisation of such an ML framework upon different underlying networks enables a standard

method of introducing and managing ML functionalities in future networks including IMT-2020.

7 High-level architectural requirements

High-level architectural requirements are classified as follows.

● Requirements set #1: enablers for correlation of data across levels and heterogenous

technologies. This requirement set addresses the challenge A mentioned in clause 6 and the

requirements which fall into this set are REQ-ML001, 002, 003. NOTE - Levels are parts of

the network, the reference points between the network entities in those deployments are

defined in the underlying network architecture (e.g. ITU-T Y.3104).

● Requirements set #2: enablers for deployment. This requirement set addresses the challenge

B mentioned in clause 6 and the requirements which fall into this set are REQ-ML-004, 005,

008, 019.

● Requirements set #3: these requirements are related to various interfaces between the

architectural components. This requirement set addresses the challenges B and C mentioned

in clause 6 and the requirements which fall into this set are REQ-ML-006, 007, 009, 020.

● Requirements set #4: these requirements are related to declarative specifications used for

specifying the ML applications. This requirement set addresses the challenges C and D

mentioned in clause 6 and the requirements which fall into this set are REQ-ML-008, 010,

011, 012, 013.

● Requirements set #5: these requirements relate to the management of the architectural

components. This requirement set addresses the challenge D mentioned in clause 6 and the

requirements which fall into this set are REQ-ML-014, 015, 016, 017, 018.

NOTE – Some requirements may be classified in two sets, e.g. 008. This is due to the fact that they

contribute to both the sets of requirements.

Table 1 provides high-level requirements for various aspects of the proposed high-level

architecture. The corresponding classification of each requirement is listed under the relevant

"classification" row. These requirements should be considered as a set of specifications for the

corresponding features of the high-level architecture.

Table 1 – High-level requirements

REQ-ML-001
The ML architecture is recommended to support correlation of data

coming from multiple sources.

Classification Requirements set #1: enablers for correlation

Description

In future networks, sources of data may be heterogeneous, integrated

with different network functions (NFs), and may report different formats

of data. These varied "perspectives" can provide rich insights upon

correlated analysis. An architecture component to enable the ML

- 8 -

SG13-TD180/PLEN

functionalities to collect and correlate data from these varied sources in

the network is needed.

Notes

NOTE 1 – As an example, the analysis of data from User Equipment

(UE), AN Access Network (AN), Core Network (CN) and Application

Function (AF) is needed to predict potential issues related to quality of

service (QoS) in end-to-end user flows.

NOTE 2 – Other examples of such sources of data are self-optimizing

network (SON) functionalities that monitor and correlate network alarms

and key performance indicators (KPIs) [b-3GPP TS 28.554], and then

take relevant action to clear alarms or enhance network KPIs, or give

network design recommendations without human intervention.

REQ-ML-002

a) The ML architecture is required to support multiple technologies of

future networks including IMT-2020 to achieve end-to-end user

experience.

b) The ML architecture is recommended to be interfaced with non-

IMT-2020 external functional entities to achieve end-to-end user

experience.

Classification Requirements set #1: enablers for correlation

Description

Future networks will have multiple technologies coexisting side by side,

e.g., licensed and unlicensed wireless technologies, fixed mobile

convergence (FMC) technologies, legacy and future technologies. The

emergence of network slicing [ITU-T Y.3111] is one example in which

vertical technologies (networks customized to provide flexible solutions

for different market scenarios) and their integration into future networks

are important. The interfacing of ML architecture with such functional

entities will help in achieving KPIs as for example specified in [b-3GPP

TS 28.554].

Thus, it is important for the ML architecture to be capable of integration

with multiple underlying technologies and even support of application

functions.

Notes

NOTE 1 – Vehicle-to-everything (V2X) is an example of a vertical

application which may benefit from the support of network slicing.

NOTE 2 – Various communication network (e.g. 3G, 4G, 5G)

technologies could be considered as examples of underlying

technologies.

Applications for hosting in-car entertainment, processing data from

drones, entertainment applications using AR/VR (Augmented

Reality/Virtual Reality) are examples of application functions.

NOTE 3 – Examples of network functions which are not directly

managed by the NOP (Network Operator) are sensors, power circuits

and different Internet of things (IoT) modules. In some use cases, the

data from such network functions are utilized to control and monitor

both the network functions deployed in the network as well as such

external network functional entities themselves. These data could also be

then used in various types of network parameter optimizations to

achieve gains in coverage, capacity and quality by the NOP.

- 9 -

SG13-TD180/PLEN

REQ-ML-003
The ML architecture is required to support distributed instantiation of

machine learning functionalities in multiple levels.

Classification Requirements set #1: enablers for correlation

Description

Distributed instantiation helps in using data from different levels, to

enrich locally available data in a level, as needed. Thus, the ML

functionalities are required to be multi-level.

The ML functionalities are said to be deployed across multiple levels

when the reference points between the network entities in those

deployments are defined in the underlying network architecture (e.g.

ITU-T Y.3104) . Further, independent instances of ML functionalities

may be created in multiple levels.

Notes

NOTE 1 – In some use cases, the source of data may be placed in AN

and pre-processed data are handled by CN [b-ITU-T Y.3102] where the

ML model is hosted.

NOTE 2 – ML functionalities may be used for performing mobile

pattern predictions (MPPs) or slice configurations using input from the

network at multiple levels (from sources in AN or CN).

REQ-ML-004

The ML architecture is recommended to define the points of interaction

between ML functions and technology-specific underlay network

functions, independently from functionalities of the machine learning

application.

Classification Requirements set #2: enablers for deployment

Description

The specification of ML applications in future networks will be related

to the existing (or new) network services or network functions. Based on

the specification of the ML applications, placement and characteristics

of the ML functionalities are decided. The source of data and the target

of ML output are points of tight integration with the technology-specific

underlay NFs. Apart from this, ML functionalities may be generic and

do not have tight integration with technology-specific NFs. Well-defined

interface points between the ML functionalities and the technology-

specific underlay NFs are required.

NOTE 1 - ML output may be policies or configurations to be applied in

the network and target of ML output may be functions in the network for

applying ML output. Such application of ML output may be controlled

by network operator policies.

Notes

NOTE 2 – In some use cases, source of data and traffic classification

(based on ML output) may be placed in the user plane of the network,

e.g. User plane function (UPF). These may be considered as points of

tight integration between the ML functionalities and the underlying

network (e.g. AN or CN). Other ML functionalities (e.g., the ML model)

- 10 -

SG13-TD180/PLEN

do not have such interface dependencies on the underlying networks.

REQ-ML-005

The ML architecture is required to support split or combined

deployments of ML functionalities across different underlay network

functions.

Classification Requirements set #2: enablers for deployment

Description

In future networks, management and orchestration functions [ITU-T

Y.3111] will optimize the location and the performance of NFs

accordingly.

To carry forward such benefits to ML applications, similar optimizations

should also be applied to ML functionalities. Moreover, the constraints

applicable to an ML functionality may be unique.

Notes

NOTE 1 – ML training may need a graphic processor unit (GPU) and

may need to be done in an isolated environment so that it does not affect

other functionalities of the network.

NOTE 2 – As an example, depending on the latency budget, data

availability and other considerations for ML applications, the ML

functionalities could have the source of data and the ML training hosted

in the CN or AN.

REQ-ML-006
The ML architecture is recommended to support an interface to transfer

trained models among ML functionalities of multiple levels.

Classification Requirements set #3: Interface-related

Description

Training of models has certain specific needs, e.g., availability of certain

kinds of processors, availability of certain kinds of training data. Once

the training is done, the ML model has to be sent to the technology-

specific underlay network that is hosting the ML model. Model training

can be done separately from the live network. Thus, sending trained

models across multiple levels is an important requirement.

Notes

NOTE 1 – UE, Access Network functions, Core Network functions

could be treated as examples of technology-specific underlying network

functions which could host the trained model.

NOTE 2 – CN and AN could be treated as examples of multiple levels.

NOTE 3 – Depending on the availability of data, learning may be done

at the CN or AN, and trained model (e.g. classifier) hosted by the

- 11 -

SG13-TD180/PLEN

transport networks.

REQ-ML-007

The ML architecture is required to support an interface to transfer data

for training or testing models among ML functionalities of multiple

levels.

Classification Requirements set #3: Interface-related

Description

Certain levels in which the data are available may not have the training

capabilities. In such cases, there may be a need to send data for training

or testing to levels where the capacity for such operations is available.

Notes

NOTE 1 – ANs may be considered as examples of resource-constrained

networks, whereas CNs may be considered as a level where capacity

may be available to scale.

NOTE 2 – Data pre-processing may be done at the transport network

and the pre-processed data is then sent to the model at the CN for

training.

REQ-ML-008

The ML architecture is required to support flexible placement of ML

functionalities (in coordination with the management and orchestration

functions) in the underlying network functions.

Classification
Requirements set #4: Declarative specification; Requirements set #2:

enablers for deployment

Description

The flexible placement ML functionalities could be based, among other

factors, on the specifications of ML applications.

The Management and Orchestration functions utilize both the

specifications of the ML applications and the conditions in the network

to implement this requirement.

Resource allocation for ML functionalities is required to consider

various constraints (e.g., resource constraints of the NFs, latency

constraints specific to the ML application, availability of data that is

specific to the ML application, data transformation capabilities,

performance constraints, training capabilities and model characteristics).

The ML architecture should provide the ability to place the ML

functionalities in a flexible manner in the network that is most optimal

for the performance of the ML applications and based on the constraints

defined in the declarative specifications of the ML applications.

The constraints for online training and prediction for real-time ML

applications which are captured in the specification form inputs to

placing the ML functionalities in the network that can provide optimal

performance for the use case.

Notes
NOTE 1 – If the ML model includes a neural network, then a placement

decision in a GPU-based system is desirable.

- 12 -

SG13-TD180/PLEN

NOTE 2 – Based on the requirements of the ML applications, the ML

functionalities which provide latency sensitive short-term predictions

may be hosted closer to the edge. The placement may also be influenced

by considerations on data availability. This may be done in coordination

with the split of ML functionalities mentioned in REQ-ML-005.

NOTE 3 – In certain use cases, user plane data classification may be

done using ML models. Since user plane data classification is a latency-

sensitive application, the model may be hosted at the transport network,

whereas the training could be done at CN.

REQ-ML-009

a) While defining the interface with underlying networks, the ML

architecture is recommended to utilize existing standard protocols

wherever possible, with required extensions wherever needed.

b) The ML architecture is recommended to support specific interfaces

or APIs (Application Programming Interface) for interfacing with

technology-specific network functions, for sourcing data from such

NF or for configuring such NFs.

c) The ML architecture is recommended to support logical interfaces

between ML functionalities which can be hosted in multiple levels,

and the realization of such logical interfaces be implemented

according to deployment scenarios.

Classification Requirements set #3: Interface-related

Description

Sources of data and target for ML output may need specific interfaces or

APIs with the underlay networks to extract data or apply configurations.

Some use cases may need a tight coupling at integration stage between

the source and target of ML functionalities, and the NFs. In certain

cases, an extension of such interfaces may be needed to achieve the ML

functionalities in the use case.

The ML functionalities may use interfaces provided by an underlying

network as a source of data or target of configurations. In that sense,

these network specific APIs may act as realizations of an interface to the

source and target of ML functionalities.

Notes

NOTE 1 – With respect to item a above, certain interfaces may be

realized by reusing existing protocols (e.g., Radio Resource Control

(RRC) [ITU-T Y.3104], MEC [b-ETSI MEC 003], management service

(MnS) [b-3GPP TS 23.501]).

NOTE 2 – With respect to item b above, for example, a source running

in the UE may use specific APIs to extract data from a voice over long-

term evolution (VoLTE) client.

NOTE 3 – With respect to item c above, for example, in the use case

where the source runs in the AN but needs measurements from the UE,

the AN needs to configure the UE for this measurement using RRC.

- 13 -

SG13-TD180/PLEN

REQ-ML-010

The ML architecture is required to support a standard method to

represent the ML application, which can be translated into ML

functionalities in technology-specific underlay network functions.

Classification Requirements set #4: Declarative specification

Description

Automation using declarative specification and corresponding

translation into configurations is a characteristic of future networks.

Extending this technique to ML, declarative specification of ML

application and correspondingly translate that into configurations of ML

functionalities need to be supported.

Notes

Interpretation of the declarative specification allows configuration of

ML functionalities in the network by translating the specification into

the configuration that can be hosted by network functions.

REQ-ML-011

a) The ML architecture is required to support ML applications to

specify the sources of data, repositories of ML models, targets for

output from ML models, and constraints on network resources.

b) The ML architecture is required to support the time constraints

requirements of ML applications.

Classification Requirements set #4: Declarative specification

Description

The separation between technology agnostic part of the ML application

and technology-specific deployment is captured in the design time of

future network services. Declarative specifications for the ML

applications achieve this separation.

Different ML applications have varied time constraints. These

constraints form an important input to the management and orchestration

functions while determining the placement, chaining and monitoring of

the ML functionalities.

Notes

NOTE 1 – With respect to item a above, as an example, a description

written in a metalanguage may capture the requirements of a network

operator for an ML application. The management and orchestration

functions may translate it into the configuration that can be implemented

in the network.

NOTE 2 – With respect to item b above, at the tightest scale, the

application of ML in beamforming, scheduling, link adaptation network

functionalities would have latency criteria of the order of microseconds,

whereas transport and core network functionalities have a few

milliseconds of latency criteria. The least demanding in terms of latency

are management level functionalities, e.g., anomaly detection and

coverage hole detection, that can afford minutes, hours or days of

latency.

- 14 -

SG13-TD180/PLEN

REQ-ML-012
The ML architecture is required to support flexible split of ML

functionalities based on the specifications of ML applications.

Classification Requirements set #4: Declarative specification

Description

Specification of ML application is an important input for deployment of

ML in future networks including IMT-2020. But network capabilities

can change (hardware can be added or removed), NFs may be scheduled

or (re)configured dynamically by the management and orchestration

functions. These dynamic changes may necessitate a change in the split

and placement of the ML functionalities (e.g., a decision may be taken to

collocate certain functions of ML, based on changes in the link capacity,

or a decision may be taken to add a new source of data based on

decisions of the management and orchestration functions). Thus, a

combination of (a) inputs from specification, (b) the requirement of ML

functions to be capable of split and combined deployment and (c)

coordination with the underlying management and orchestration

function, is needed.

Notes
NOTE 1 – A new source of data may be instantiated based on scale out

decisions in the network.

REQ-ML-013

The ML architecture is required to support the specifications of ML

applications by third parties to specify the sources of data, repositories of

ML models, targets for output from ML models, and constraints on

network resources.

Classification Requirements set #4: Declarative specification

Description

Third party service providers may offer innovative services on top of

future networks. This may include new ML algorithms. A collaboration

between third party providers and network operators may bring new

sources of data or aggregation capabilities. The declarative process in

the architecture should extend the capabilities to include third parties,

and they should be able to include these functionalities in the

specification so that end users can benefit from such innovative services

offered by third party providers.

Notes

NOTE 1 – In some use cases, ML models may be provided as third-party

applications.

NOTE 2 – A smartphone application which interfaces with the sensors

on the UE is an example of a third-party source of data.

NOTE 3 – A third-party voice over IP service provider wants to

optimize call quality over the network by running an ML application that

configures network parameters.

- 15 -

SG13-TD180/PLEN

REQ-ML-014
The ML architecture is required to support ML model selection at the

setup time of the ML functionalities.

Classification Requirements set #5: Management of ML functionalities

Description

Advances in machine learning suggest that in future networks there

would be ML models with varied characteristics (e.g., using a variety of

optimization techniques and weights) that are appropriate for different

problem spaces and data characteristics.

In future networks, new sources of data may get added dynamically. To

extend the ML applications to such new and heterogeneous sources of

data, ML model selection has to be done dynamically, based on the data

provided by the sources.

Notes

NOTE 1 – Plug and play of new network functions (e.g. new UPF) into

a live network may be an example for dynamic onboarding of new

sources of data.

REQ-ML-015
The ML architecture is required to support ML model training and

model updates while preventing impact on the network.

Classification Requirements set #5: Management of ML functionalities

Description

ML model training has several considerations: use of specific hardware

for speed, availability of data, parameter optimizations, avoiding bias,

distribution of training, etc.

Moreover, in future networks, service disruptions should be avoided

while model training and updates are performed.

Notes

REQ-ML-016

The ML architecture is required to support capabilities to monitor the

network operations based on the effect of ML and to update the ML

models and/or policies without impacting the network.

Classification Requirements set #5: Management of ML functionalities

Description

The effect of ML on the network needs to be monitored. Various KPIs

are measured constantly and the impact of machine learning on them as

well as on the ML functionalities themselves need to be monitored and

corrected if needed, continuously. ML functionalities need to be trained

for future recognition and handling such corrected scenarios.

- 16 -

SG13-TD180/PLEN

Notes

NOTE 1 – Continuous improvement of the automated fault recovery

process workflows is an example. The root cause analysis (RCA) from

the fault recovery process is provided for configuring the management

and orchestration functions, and also the effect produced by ML in the

network is evaluated and used to optimize the ML functionalities

themselves.

REQ-ML-017
The ML architecture is required to support an orchestration functionality

to monitor and manage all the ML functionalities in the network.

Classification Requirements set #5: Management of ML functionalities

Description

The performance of the ML functionalities in the network is monitored

and when the performance falls below a predefined threshold, the ML

functionalities are reconfigured to improve it.

The varied sources of data (e.g. CN, AN) imply that there could be

various training techniques including distributed training. Complex

models may be trained using varied data. The performance of such

models can be determined and compared in an isolated environment.

Based on such comparisons, network operators can then select the

appropriate ML functionalities (based on internal policies) for specific

ML applications.

NOTE 1 – Evaluation involves evaluation of network performance along

with performance of ML algorithms.

Notes
NOTE 2 – Reselection of ML model is an example of reconfiguration

done to improve the performance of the ML functionalities.

REQ-ML-018
The ML architecture is required to support flexible chaining of ML

functionalities including multi-level chaining.

Classification Requirements set #5: Management of ML functionalities

Description

Flexible chaining of ML functionalities is required to be done based on

the hosting and positioning on different NFs and levels. This is to enable

the hybrid or distributed ML functionalities.

Chaining of ML functionalities may be used to build a complex ML

functionality.

Management and orchestration functions provide NOPs with capabilities

to rapidly design, develop and deploy network services in the

technology-specific underlay networks. Similarly, ML functionalities in

the network need mechanisms including flexible chaining to keep up

with innovation in the technology-specific underlay networks. As

underlying network services evolve and deploy rapidly, so do the ML

functionalities on top of them, using flexible chaining techniques. This

- 17 -

SG13-TD180/PLEN

requirement aims to give the ML functionalities, the ability to adapt to

dynamic service creation and orchestration in the underlying networks.

Notes

REQ-ML-019
The ML architecture is required to support plugging in and out new data

sources or configuration targets to a running ML environment.

Classification Requirements set #2: enablers for deployment, enablers for correlation

Description

Certain advanced applications in future networks, e.g., massive Internet

of things (mIoT), require handling of unstructured data from a huge

number of data sources that may be plug and play. One such use case is

the analysis of logged data for anomaly detection in networks.

Notes

NOTE 1 – Scaling of ML functionalities based on type and volume of

incoming data is an example of handling new data sources.

NOTE 2 - The configuration of ML functionalities in the network needs

to handle the plugging in and out of new data sources or configuration

targets based on metadata of data sources.

REQ-ML-020
The ML architecture is recommended to support data sharing between

ML functionalities using distributed data sharing mechanisms.

Classification Requirements set #3: Interface-related

Description
Cross-level sharing of data is needed to enable correlated ML decisions

in future networks.

Notes
NOTE 1 - Concepts like data lakes are emerging in future clouds and

can also be exploited in network operators’ clouds.

8 Framework of the high-level architecture

The framework of the high-level architecture described in this clause supports the requirements

defined in Clause 7.

This clause provides description of the high-level architectural components and the high-level

architecture itself, and provides guidelines for realization of the high-level architecture on different

technology-specific underlay networks.

This approach to design the architecture provides an ability to analyse both ML solutions which are

agnostic to technology specific underlying networks and issues specific to integration of ML to such

underlay networks. Examples of the application of this architectural framework in different

technology specific underlay networks are provided in Appendix I.

- 18 -

SG13-TD180/PLEN

8.1 High-level architectural components

This section specifies the high-level architectural components which are essential parts of the

architectural framework. Integration of such components to a network architecture by interfacing

with the NFs, along with the placement of the ML functionalities in such a network, forms the

architecture framework.

Figure 3 – High-level architectural components

The high-level architectural components include the following:

1) machine learning pipeline, as defined in Clause 3, is a set of logical nodes, each with

specific functionalities, that can be combined to form a machine learning application in a

telecommunication network.

The following describes the nodes in the ML pipeline.

• SRC (source): This node is the source of data that can be used as input to the ML

pipeline.

NOTE 1 – Potential SRC nodes include user equipment (UE), session management

function (SMF) [ITU-T Y.3104], and application function (AF) [ITU-T Y.3104].

• C (collector): This node is responsible for collecting data from one or more SRC nodes.

NOTE 2 – It may have the capability to configure SRC nodes. For example, the radio

resource control (RRC) protocol [b-3GPP TS 23.501] can be used to configure user

equipment (UE) acting as SRC node. It may use vendor specific operations,

administration and maintenance (OAM) protocols to configure an SMF acting as an

- 19 -

SG13-TD180/PLEN

SRC node. Such configurations may be used to control the nature of data, its granularity

and periodicity while it is generated from the SRC.

• PP (pre-processor): This node is responsible for cleaning data, aggregating data or

performing any other pre-processing needed for the data to be in a suitable form so that

the ML model can consume it.

• M (model): This is a deployable ML model.

NOTE 3 – Example could be a ML algorithm implemented in software as a NF [ITU-T

Y.3104].

• P (policy): This node enables the application of policies to the output of the model node.

NOTE 4 – This node can be used to minimize impacts when the output of machine

learning is applied to a live network. Specific rules can be put in place by an network

operator to safeguard the sanity of the network, e.g., major upgrades may be done only

at night time or when data traffic in the network is less.

• D (distributor): This node is responsible for identifying the SINK(s) and distributing the

output of the M node to the corresponding SINK nodes.

NOTE 5 – It may have the capability to configure SINK nodes. RRC protocol may be

used to configure a UE acting as a SINK node.

• SINK: This node is the target of the ML output, on which it takes action.

NOTE 6 – For example, a UE acting as a SINK node may adjust the periodicity of

channel measurement based on ML output.

2) machine learning function orchestrator (MLFO): as defined in Clause 3, a functionality

that manages and orchestrates the nodes of ML pipelines based on ML intent and/or dynamic

conditions.

NOTE 1 – MLFO selects and reselects the ML model based on, e.g. its performance.

NOTE 2 – The placement of the ML pipeline nodes, based on the corresponding capabilities

and constraints of the use case, is the responsibility of the MLFO.

NOTE 3 – MLFO also provides chaining functionality, i.e., connecting ML nodes together to

form a ML pipeline. For example, chaining can be used to connect an SRC node instantiated in

the access network with collector and PP nodes instantiated in the core network. The chain

itself is declared in the use case specification and its technology-specific implementation in the

network is done by the MLFO. The MLFO determines the chaining considering the constraints

(e.g., timing constraints for prediction).

NOTE 4 – ML intent is a declarative description which is used to specify a machine learning

application. ML intent does not specify any technology-specific network functions to be used in

the ML application and provides a basis for mapping ML use cases to diverse technology-

specific instantiations. ML intent can use a meta language specific for machine learning to

define ML applications.

3) ML sandbox: this is an isolated domain which allows hosting of separate ML pipelines to

train, test and evaluate them before deploying them in the live network. An ML sandbox can

host a simulator to generate data needed for training or testing, in addition to utilizing data

derived from the network.

In addition to the above architecture components, the following supporting aspects of the

architecture are to be noted:

- 20 -

SG13-TD180/PLEN

o Service-based architecture (SBA) [b-ETSI TS 129 500] may be used to provide interfaces

between ML functionalities and underlying networks. Similarly, for the ML pipeline in

sandbox, SBA may be used to interface the ML functionalities with the simulator.

This provides a uniform interface towards the ML overlay for NFs and the simulator, alike.

SBA is also used to manage the ML functionalities by the MLFO.

o Data handling interface is the interface defined in coordination with the ML underlay

networks. The impacts to the source of data and target of configurations (as a result of ML

pipeline execution) are localized by this interface.

NOTE 1 - Extensions of existing protocols are used to minimise the architectural impacts to

the underlay.

NOTE 2 - The data handling interface needs to support non-SBA protocols in case the

network functions in the ML underlay networks are not SBA-capable.

With reference to figure 3, the arrows 2 and 3 show the paths for generated data from the

ML underlay networks and the simulator respectively. The arrows 1 and 4 show the paths

for configuration of the target based on ML output.

Appendix II provides the mapping of the architectural components and supporting aspects to the

requirements in Clause 8.

8.2 High-level architecture

The high-level architecture shown in Figure 4 is derived from the high-level requirements specified

in Clause 7 and builds upon the architectural components and architecture supporting aspects

described in Clause 8.1.

Figure 4 – High-level architecture

Interface legend

1,2: Data handling interface for Simulator.

3: Interface between ML Sandbox and ML pipeline subsystems.

4.5: Data handling interface for ML underlay networks.

https://wiki.edgexfoundry.org/display/FA/Introduction%20+to+EdgeX+Foundry.

- 21 -

SG13-TD180/PLEN

6,7: Management and orchestration interface for ML pipeline and ML sandbox respectively.

8: Interface between MLFO and Management and Orchestration functions of the underlay

networks.

9,10: Multi-level interface between ML pipeline nodes.

The three main building blocks of the high-level architecture in Figure 4 are:

• Management subsystem: This sub-system provides the management and orchestration functions

defined in [ITU T Y.3111]. In addition, it provides the MLFO functionality.

The management subsystem enables to extend the management and orchestration mechanisms

used for IMT-2020 and future networks to ML pipeline nodes. This brings uniformity to the

management of ML functionalities and NFs.

The MLFO works in coordination with the other functions of the management sub-system to

manage the ML pipeline nodes.

NOTE 1 - The interfaces between the functions of the management sub-system and NFs in the

ML underlay networks comply with the interface specifications as defined in [ITU T Y.3111].

NOTE 2 - The interaction between MLFO and the other functions of the management sub-

system may be achieved using service-based architecture (SBA).

• ML pipeline subsystem: The ML pipeline is a logical pipeline that can be overlaid on existing

network infrastructures. It uses the services of the MLFO for instantiation and setup. Integration

aspects of such an overlay of a ML pipeline on a specific technology ML underlay networks may

require extension of existing interfaces or definition of specific APIs.

In addition, the following points are to be noted:

− SBA may be used for interfacing between NFs and ML pipeline nodes as well as between

ML pipeline nodes themselves. The SRC exposes interfaces for consuming data from the

NFs and producing data towards the collector (C). The SINK exposes interfaces for

consuming the ML output from the distributor (D) and produces such configurations to the

NFs which it interfaces with.

NOTE 3 – Due to the heterogeneity of NFs and ML underlay networks, SBA may not be

supported by NFs in the ML underlay networks. In such cases, APIs or interfaces specific to

those ML underlay networks are used between the ML pipeline nodes and the NFs.

− The placement and chaining of the ML pipeline nodes are controlled by the MLFO and this

control may be influenced by factors such as:

▪ Inputs from the ML Intent to the MLFO which may give constraints on the placement of

ML pipeline nodes.

NOTE 4 – The requirement to place a ML model (M) on a network computing resource

which provides a specific type of acceleration capability is an example of constraints on

the placement of M.

▪ Feedback received by the MLFO from the management and orchestration functions of the

ML underlay networks or from the ML pipeline nodes may provide inputs on the

placement and chaining of ML pipeline nodes.

NOTE 5 – Decoupling of the location of the ML pipeline nodes from their functionalities,

except in the case of performance constraints, is achieved using the placement and chaining

mechanisms.

− The deployment of a ML pipeline in future networks including IMT-2020 may span different

levels (including third party applications). In this case, a multi-level interface between nodes

of a ML pipeline is used that allows the ML pipeline to be distributed across levels.

- 22 -

SG13-TD180/PLEN

NOTE 6 – As an example, as shown in figure 4, a ML pipeline is distributed over multiple

level (a specific deployment may for example distribute the pipeline across UE, AN and CN).

Based on the specific ML application, different ways of distributing the ML pipeline nodes

are possible.

• ML sandbox subsystem: A ML sandbox allows ML pipelines to adapt to dynamic network

environments such as those of future networks including IMT-2020 where a variety of conditions

may change (e.g., air interface conditions, UE position, network capabilities and resources). The

ML sandbox subsystem includes a simulator and is monitored by the MLFO according to the

specifications in the ML Intents. The simulation environment allows network operators to study

the effect of ML outputs before deploying them on ML underlay networks. Feedbacks from the

management and orchestration functions are provided to the ML sandbox subsystem so that the

ML pipelines can adapt to the dynamically changing network environments.

The following points are to be noted:

− The interfaces between the ML pipeline subsystem and the ML sandbox subsystem allow the

ML pipelines to interface with the ML sandbox for training and update of ML models.

− Data from the ML underlying networks may be used in conjunction with the data from the

simulator to train the ML models in the ML sandbox subsystem.

− The management of the ML pipeline nodes in the ML sandbox subsystem is also controlled

by the MLFO. This allows the MLFO to train and select the ML model(s) for a given ML

application.

8.3 General guidelines for realization of the high-level architecture

General guidelines for realization of the high-level architecture on different technology-specific

underlay networks are as follows:

• Instantiation of the ML pipeline nodes: an ML application is described using ML Intent. The

flow of information in an ML application can be represented by the chaining in an ML pipeline.

The data from various source nodes, e.g. coming from various underlying networks, need to be

gathered (by a collector node) and pre-processed (by a pre-processor node) before feeding these

data to the ML model (model node). The output of the ML model is then used to apply policies

(by a policy node) that will be implemented (by a SINK node).

An ML application can be realized by instantiating nodes of the ML pipeline with specific roles

(e.g., SRC, C, SINK), and associating these nodes to the technology specific underlying

network functions, based on the corresponding requirements of the ML application and the

capabilities of the underlying network functions.

The instantiation is performed by the MLFO in coordination with the management and

orchestration functions.

• ML application interfacing with underlying network functions: there are two points of specific

interfacing with the underlying network functions for a ML application - the SRC and the SINK

nodes. The SRC nodes will have either an SBA based interface to the associated NFs which

produce data or a technology-specific interface for non-SBA capable NFs. Similarly, the SINK

nodes will have an SBA based interface to the associated NFs which enforce the output policies

or a technology-specific interface for non-SBA capable NFs.

• Management of the ML pipeline: this is done by the MLFO in coordination with the

management and orchestration functions of the underlying networks.

• ML model training and evaluation in the ML sandbox: this is controlled by the MLFO

independently of the underlying networks. The interface between the ML sandbox sub-system

and the ML pipeline subsystem is used to transfer trained ML models, data for training and ML

- 23 -

SG13-TD180/PLEN

model updates between the ML sandbox and the underlying networks which host the ML

pipeline.

Appendix I gives examples of applying the above guidelines to the realization of the high-level

architecture on technology-specific underlay networks.

9. Security considerations

This Recommendation describes the architectural framework of machine learning which is expected

to be applied to future networks including IMT-2020 networks: therefore, general network security

requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-T

3101].

It is required to prevent from unauthorized access to, and data leaking from, a ML pipeline, whether

or not they have a malicious intention, with implementation of mechanisms regarding

authentication and authorization and external attack protection etc.

- 24 -

SG13-TD180/PLEN

Appendix I: Examples of realization of the high-level architecture on technology-specific

underlay networks

(This appendix does not form an integral part of this Recommendation.)

Figure 5 gives an example of realization of the high-level architecture on an IMT-2020 network

[ITU-T Y.3104] [ITU-T Y.3111].

Figure 5 – Example of realization of the high-level architecture in an IMT- 2020 network

This example of realization is represented in the following manner: the ML pipeline shows the

positions in this realization wherever the nodes in the ML pipeline can be hosted, e.g., CN, AN, UE

or management functions. For example, the pipeline represented by arrows 1→2→4→ML pipeline

2 uses inputs from UE to make predictions at CN (e.g., MPP-based ML applications).

NOTE - The sandbox subsystem is not shown in figure 5, but its functionality is applicable also in

figure 5.

• Examples of realization in support of Requirements set #1 and Requirements set #2:

– Consider arrows 5→4→ML pipeline 2→6: this pipeline uses inputs from CN and possibly a

combination of UE inputs to make predictions at CN and applies it to the management

functions. This application of ML output can in turn affect configurations in different levels

(e.g., SON decisions made at CN or closed loop decisions on resource allocations done in the

network).

- Consider arrows 1→3→ML pipeline 1→7: this pipeline uses inputs from UE and hosts the

ML model in AN for latency sensitive decisions to be applied in AN itself.

• Examples of realization in support of Requirements set #3:

– Consider arrow 1: this can be realized using RRC.

– Consider arrows 2, 3, 4, 5, 7: this can be realized as an extension of service interfaces in CN

[ITU-T Y.3104].

– Consider arrow 6: this can be realized via reuse of management function interfaces defined

in [ITU-T Y.3111].

• Examples of realization in support of Requirements set #4:

- 25 -

SG13-TD180/PLEN

– UE is a resource-constrained device, hence only the SRC is instantiated in UE. This

constraint is specified in the ML intent.

• Examples of realization in support of Requirements set #5:

– The collectors in AN and CN are placed by the MLFO based on the specifications of the ML

applications in the ML intent. For latency sensitive applications in AN, ML pipeline 1 is

used. ML pipeline 2 is used for latency tolerant use cases. The chaining is done according to

these requirements specified in the ML intent.

- 26 -

SG13-TD180/PLEN

Appendix II: Mapping of the architectural components and supporting aspects to the

requirements in Clause 8

 (This appendix does not form an integral part of this Recommendation.)

Table 2 provides the mapping of the architectural components and supporting aspects to the

requirements in Clause 8.

Table 2 – Mapping of architectural aspects to the requirements

Architectural aspects Requirements Mapping explanation

ML pipeline nodes Requirements set #1

Requirements set #2

The ML pipeline provides a common

vocabulary for ML on IMT-2020 and future

networks. By defining these nodes, it

becomes possible to consider the evolution of

ML separately from the underlay networks.

Instantiation of these nodes form an

important part of deployment of ML overlay

on different underlay networks. The functions

of these nodes are defined independently of

their location in the network, and hence this

allows flexible placement of such nodes in

the network. Split, merge and chaining of ML

pipeline nodes allows to deploy complex

functions from these basic nodes.

MLFO Requirements set #5,

Requirements set #4,

Requirements set #2

This component orchestrates and manages

the ML pipeline nodes. It is also responsible

for optimal placement and chaining of ML

pipeline nodes in the network. It implements

these functions in coordination with the

management and orchestration functions. The

declarative specifications of the ML

applications are supported by the MLFO by

converting them into underlay-specific

deployments. It also selects the models and

reselects them based on the needs of the ML

applications and other constraints defined in

the ML Intent.

ML Sandbox Requirements set #5 This component provides the ability to train,

evaluate and monitor the performance of ML

models before deploying them in a real

network. It interfaces with the underlay

networks for transfer of data or trained

models. In addition, it hosts the simulator

which may generate data required for training

- 27 -

SG13-TD180/PLEN

the ML models.

ML Intent Requirements set #4 Written in a metalanguage, this architectural

supporting aspect defines the ML application,

its needs in terms of data input, configuration

output, any other constraints or

characteristics. It is used as input towards the

functionalities of the MLFO. This is the input

for MLFO to create a deployable ML

pipeline (one which conforms to the

requirements) on specific underlay networks.

By standardizing this component, it is

possible for 3rd party solution providers to

integrate with the ML pipeline.

SBA Requirements set #3 This architectural supporting aspect is used to

interface between the underlay network

functions and the ML pipeline. It provides the

necessary loose coupling between the ML

overlay and the ML underlay. SBA is also

used to interface between the simulator and

the ML pipeline. It is used to train the ML

pipeline and to configure the simulator using

the ML pipeline.

- 28 -

SG13-TD180/PLEN

Bibliography

[b-ETSI MEC 003] ETSI GS MEC 003 V1.1.1 (2016), Mobile Edge Computing (MEC);

Framework and Reference Architecture.

[b-ETSI GR ENI 004] ETSI GR ENI 004 V1.1.1 (2018), Experiential Networked Intelligence

(ENI); Terminology for Main Concepts in ENI.

[b-ETSI NFV-IFA 014] ETSI GS NFV-IFA 014 V2.3.1 (2017), Network Functions Virtualisation

(NFV) Release 2; Management and Orchestration; Network Service

Templates Specification.

[b-ETSI TS 129 500] ETSI TS 129 500 V15.0.0 (2018-07) 5G; 5G System; Technical

Realization of Service Based Architecture;

[b-IEC] IEC whitepaper on Edge Intelligence, http://www.iec.ch/whitepaper/

pdf/IEC_WP_Edge_Intelligence.pdf.

[b-ITU GLOSSARY] Broadband: Acronyms, Abbreviations & Industry Terms,

https://www.itu.int/osg/spu/ni/broadband/glossary.html

[b-ITU-T Q.5001] Recommendation ITU-T Q.5001 (2018), Signalling requirements and

architecture of intelligent edge computing.

 [b-ITU-T Y.2322] ITU T Recommendation Y.2322 (2018), “The functional architecture of

virtualized control network entities management and orchestrator in next

generation network evolution.”

[b-ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), “Security requirements for

NGN release 1”

[b-ITU-T Y.3101] Recommendation ITU-T Y.3101 (2018), “Requirements of the IMT-2020

network”

[b-ITU-T Y.3102] ITU-T Recommendation Y.3102 (2018) “Framework of the IMT-2020

network.”

[b-ITU-T Y.3105] Recommendation ITU-T Y.3105 (2018), “Requirements of capability

exposure in the IMT-2020 network.”

[b-ITU-T Y.3170] Recommendation ITU-T Y.3170 (2018), “Requirements for machine

learning-based quality of service assurance for the IMT-2020 network.”

[b-ITU-T Y.3650] ITU-T Recommendation Y.3650 (2018), “Framework of big-data-driven

networking.”

[b-3GPP TS 23.501] 3GPP TS 23501 Release 15 (2018), “System Architecture for the 5G

System.”

[b-3GPP TS 28.554] 3GPP TS 28.554, “Management and orchestration of 5G networks; 5G

End to end Key Performance Indicators (KPI) (Release 15)”

https://wiki.edgexfoundry.org/display/FA/Introduction%20+to+EdgeX+Foundry.
https://wiki.edgexfoundry.org/display/FA/Introduction%20+to+EdgeX+Foundry.
http://www.iec.ch/whitepaper/%20pdf/IEC_WP_Edge_Intelligence.pdf
http://www.iec.ch/whitepaper/%20pdf/IEC_WP_Edge_Intelligence.pdf
https://www.itu.int/osg/spu/ni/broadband/glossary.html

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this document

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	7 High-level architectural requirements
	8 Framework of the high-level architecture
	8.1 High-level architectural components
	8.2 High-level architecture
	8.3 General guidelines for realization of the high-level architecture

	9. Security considerations
	Appendix I: Examples of realization of the high-level architecture on technology-specific underlay networks
	Appendix II: Mapping of the architectural components and supporting aspects to the requirements in Clause 8
	Bibliography

