

SA WG2 Temporary Document
Page 1

[bookmark: _GoBack]SA WG2 Meeting #117	S2-166257
17-21 October 2016, Kaohsiung City, Taiwan 	(revision of S2-166144)

Source:	Cisco Systems, Inc., Ericsson, NTT DoCoMo, ZTE
Title:	Interim agreements for KI 7
Document for:	Approval
Agenda Item:	6.10.X
Work Item / Release:	FS_NextGen / Rel-14
Abstract of the contribution: Proposes interim agreements for key issue 7.
Discussion
1	Introduction
In previous meetings the notions of stateless network functions and stateless architectures have – directly or indirectly – been entertained by various contributions. Similarly, some of the high level 5G architectures in Section 7 of TR 23.799 assume the existence of a state database in order to achieve a “stateless system” and a means to exchange data and notifications in addition to signalling between network functions of the same or different type.
This paper aims at enabling 3GPP SA2 to have an informed discussion about the various technical aspects of stateless network functions and also the new challenges that this concept introduces –areas which have not been touched upon in previous meetings.
The paper closes by discussing whether these challenges have been properly addressed and whether the related architecture enhancements should be specified. In line with this, the paper proposes related interim agreements for Key issue 7 for TR 23.799.
2	Definitions
In the context of this paper, the following terms are defined:
-	Stateless network function. A control plane network function which only holds subscriber and session state for a given session while performing transactions for that session. When a new transaction is triggered, the state information is fetched from a state database; once the transaction has been completed, the session state is written to the state database and purged in the network function.
-	Stateless system. A system which consists of stateless network functions. The state database is used to pass state information between stateless network functions of the same, or optionally different type.
2	Achieving stateless NF
Enabling stateless network functions requires various design decisions to be taken, including:
-	whether the existing subscriber data base (SDM) can also be used as a state repository
-	whether a single physical (common and centralized) state data base can be used or whether a local architecture for the state data base is required
-	how stateless network functions are dynamically selected when transactions need to be performed
-	how restoration and recovery are supported in a stateless system
-	whether the interface between a network function and the state databased should be standardized
2.1	Use of common repository for subscription profile and session state information
Subscription profile information is typically much more static than session state information, which generally changes every time there is an interaction between the UE and the network and also within the network.
This means that the technology needed for a subscriber database is very different, e.g. it mostly requires read operations and a comparatively lower number of TPS (Transactions Per Second) per subscriber session, compared to what is required for a session state database. Hence use of a common repository for the Session DB and State Repository will result either in suboptimal use of resources or suboptimal performance. In conclusion, these two should be kept separate from a standardization point of view.
Conclusion 1: Separate repositories should be used for storage of subscription profile and session state information.
2.2	Centralized vs local state repositories
If a common repository is used for storing the state information of all the CN network functions, then we call it centralized state repository. On the other hand, if each NF has its own state repository for storing its own state information, then we call it local state repository. We evaluate these two approaches in the following sections.
2.2.1	Latency for accessing the state information
Some of the NFs, e.g. SMCF, PF, AF, etc. are typically centrally located as compared to the other NFs in the CN, e.g. MMF, which benefit from being deployed at the edge of the CN. Thus, since the NFs are physically distributed, a centralized state repository will result in higher access latency (i.e. time required for read and write operations) at least for some of the NF, i.e. for those NFs which are located far from the centralized state repository. This in turn delays completion of transactions executed by those network functions.
Observation 1: With a centralized state repository the latency to access state information will be higher for some of the NFs, which in turn will also increase the delay for completing transactions carried out by those network functions.
2.2.2	Cost of information transport
Depending upon the services and features activated for a given subscriber, session state information can easily amount to a few hundred kilobytes or a megabyte even. This means that a state repository implies a significant amount of traffic between the network function and the state repository – solely for fetching and storing session state information. It is worth emphasizing that this occurs each time a transaction is to be performed by a given network function. In summary, this approach significantly increases the I/O overhead and related to this, the cost of information transport for network functions (regardless of whether the state repository is centralized or local). In case of a centralized state repository the cost of transport will be even higher since long distance links are involved.
Observation 2: A state repository (in particular a centralized state repository) increases the cost of information transport for all NFs.
2.2.3	Ownership of State Repository
For roaming and network sharing cases, some of the NFs belong to different administrative domains, e.g. a different PLMN or different MVNO. Also, some of the NFs, e.g. AF and SCEF, may belong to a 3rd party. In all these cases, a centralized state repository for all the NFs within CN (i.e. a shared state repository) appears infeasible and impractical.
Observation 3: In some cases, since the NFs may belong to different administrative domains, having a centralized state repository for all the NFs in the CN may not be practical.
2.2.4	Saving in overall state information, by storing a single copy of the overlapping state information in a centralized State Repository
One of the main motivations typically quoted for a centralized state repository is to reduce the duplication of overlapping state information across different NFs within the CN and to avoid having to pass state information between network functions.
However, since different functionality is assigned to different NFs, the overlap between their session state information is very low as compared to NF-specific session state information that each NF is required to maintain. The mobility management function is for instance required to store information related to the UE’s mobility patterns and related to that, optimized paging area information, the security context and associated keys, the allocated TAI list etc. The session management function is required to store the policy and charging rules activated for the UE, information related to traffic steering, data usage credit information received from the OCS, other state information associated with the selected UPFs etc.
A quick analysis based on 3GPP TS 23.008 clause 5.2A suggests that only around 35% of the subscriber parameters are overlapping between the MME and S/PGW (i.e. parameters stored by both of these NFs). When we consider this number between MME, HSS and S/PGW, it drops to around 14%.
It is worth noting that these figures are based on the standardized parameters and the corresponding state information. Once implementation specific parameters and corresponding state information is also considered, which is very different across NFs and also across vendors, the amount of overlap decreases even further.
Thus, the reduction and hence saving in overall state information, by storing only one copy of the overlapping state information in a common/centralized state repository is not significant. On the other hand, there will be a significant cost for transportation of the information between the NF and the centralized state repository.
Observation 4: The reduction and hence saving in overall state information, by storing only one copy of the overlapping state information in a common/centralized state repository is not significant.
2.2.5	Summary
Based on the above 4 observations, it can be concluded that a local state repository, i.e. each NF having its own State Repository, is preferable compared to the centralized/common State Repository.
Conclusion 2: Local state repositories, i.e. each NF has its own state repository to store its own state information, is preferred over a centralized/common state repository.
2.3	Interface between a NF and its respective State Repository
Each NF maintains two types of state information: subscriber session level state information and NF level state information.
For the subscriber session level state information, a small part is standardized, e.g. the MM function storing IMSI, APN, QoS, security context, etc. On the other hand, a relatively large portion is implementation-specific, e.g. UE’s mobility pattern, last visited cell IDs, paging strategy information, etc.
The NF-level state information, which comprises of statistics, operator policies, heuristics for fine tuning of the session handling parameters, the map of available and allocated resources across all the sessions etc. is entirely implementation specific.
Thus, to really make a NF stateless, we have to ensure that each NF is allowed to store the standardized as well as the vendor specific state information into its state repository.
One option is to define a transparent container for allowing the NF to store the implementation specific state information in the State Repository. However, in this approach, the transparent container – which will be relatively large – cannot be read or updated partially, e.g. if only one of the parameter within the transparent container needs to be read or updated. As a consequence, this approach will be very inefficient.
Besides that, the frequency of updating the state information partially or fully in the state repository could be very high.
In addition, implementations may want to choose different frequencies and strategies for fetching and updating state information (as compared to exchange of parameters/information between two NFs, which is for obvious reasons fully standardized). However, the state synchronization algorithm must be fully standardized in order to define protocols and predictable interactions between NFs and the state repository (since the protocol used will play a pivotal role in determining the time/delay for accessing the state repository). It is important to study and fully understand the complexity this entails in definition and standardization of NF interactions, in order to ensure that the purpose of key issue #7 is not defeated, that is, to find solutions that enable agile and rapid deployment of new services by allowing for flexible interconnect between control plane network functions. Also, different NF may need to employ different technologies and protocols to meet their performance and cost target.
Finally, given the implementation specific state that every network function inevitably has, only network functions of the same type and from the same vendor can fully leverage the information stored in the state repository, the benefits of a standardized interface are not obvious. Even more so, the benefit of a standardized interface on 3GPP architecture level is not obvious.
Considering all these aspects, it is best to leave the interface between the NF and its respective state repository beyond the scope of 3GPP standardization and leave it to implementations.
Conclusion 3: The details of a potential interface between a NF and its state repository should be left to implementation.
2.4 	Areas requiring further study
2.4.1	Selection of stateless network functions
In a stateless system, a serving network function of a given type needs to be dynamically assigned each time a transaction is to be executed by this function type. For example, if a service request from a UE is to be handled, then a serving control plane function needs to be first selected or assigned (Note that this paper does not assume a specific control plane architecture granularity, the considerations made here are generally applicable.) The same applies if the policy control function decides to install or update policy rules in the control plane function. Obviously the same has to be done to support the reverse interaction, i.e. a serving policy function needs to be dynamically assigned if the control plane function intends to interact with the policy function. Similarly, if the user plane function needs to interact with the control plane function (e.g. to trigger paging if a downlink packet has been received while the UE is in Idle state) a control plane function needs to be dynamically assigned.
As of now, the details of the selection mechanism for stateless network functions have not been studied in SA2. This includes aspects such as whether the selection mechanism is centralized or distributed, how information about available stateless network functions (i.e. the list of candidate stateless functions to assign a transaction to) is made available and kept up to date (e.g. in case of stateless network function failures, etc.) towards the selection function, how load balancing can be supported, etc.

Figure A: Without coordination, independent selection of stateless network functions can easily lead to race conditions such as multiple CCFs being selected for the same session.
It is also worth emphasizing that multiple selection decisions for the same session may happen simultaneously. As depicted in Figure A, a serving control plane function may need to be selected in response to a UE’s Service Request. At the same time however, a control plane function may need to be assigned to enable the user-plane function to trigger paging. If the selections are not coordinated, this can easily lead to different control plane functions being selected for the same session (which is to be avoided to avoid race conditions and repercussions on other network functions).
Finally, the same scenario can also happen for subsequent requests from the same peer. As depicted in Figure B, the UE may send a Service Request directly followed by a Detach Request. Clearly, the system must not continue to execute the Service Request when receiving the Detach Request. The key question is however how this can be achieved in a stateless system?

Figure B: Without coordination subsequent requests from the UE may be handled by different CCFs, which in turn may prevent efficient implementations (e.g. abortion of the on-going Service Request procedure by CCF B).
One option may be to apply some coordination (e.g. in the RAN in this case) to ensure stickiness (i.e. to ensure that the same CCF is selected for subsequent requests. This however defeats the original idea, which was to enable any CCF to handle transactions. Another alternative may be to inform all CCFs about some/all requests, which in turn severely impacts the scalability of the solution.
How these issues can be avoided (e.g. by means of coordination for the selection of stateless network functions) has not been studied in SA2 as of now.
Observation 5: Selection of stateless network functions poses new system challenges, e.g. where and how to perform the selection and how to avoid race conditions (and related system malfunction) resulting from concurrent network function selection processes. Addressing these issues is key to understand the viability of the notion of stateless network functions.
2.4.2	Restoration and recovery in a stateless system
As per definition, a network function (for a given session) is only stateless when not performing a transaction for that session. This raises the question how network function failures are handled in situations where stateless network functions are actually not stateless (i.e. while performing a transaction).
While some may argue that – by design – a stateless system will be able to cope with failures of stateless network functions, it is not obvious how this is achieved while a given function holds state and is in the middle of a procedure, which may have side effects on other functions in the system.
In this context it is worth noting that transactions often involve multiple network functions so that a network function needs to keep the session state until the parts of the transaction that involves other functions have been completed. As a result, the duration during which a stateless network function is actually not stateless, i.e. during which it needs to hold state may be long.
Also, the system behaviour is not obvious in case a network function fails in the middle of a transaction that involves multiple network functions. Instead, it appears likely that even a stateless system – specifically while functions are not stateless – may still require a solution for restoration and recovery in addition.
If so, then also the interaction and coordination between a potential restoration and recovery solution and the selection of stateless networks needs to be better understood.
Observation 6: Even a stateless system – specifically while functions are not stateless – is likely to still require a solution for restoration and recovery in addition. Studying this area is not only important to define the complete solution, it is also key to enable an informed decision whether the promises of stateless network functions hold.
2.4.3	Efficiency of information exchange via a state database
While key challenges (and benefits) related to separating state from network functions have not been studied yet, it is already clear that the solution comes at a significant price.
In case a state repository (centralized or local) is used to pass state information (e.g. UE context information) between network functions (of the same or different type), the overhead doubles compared to simply passing context information in a direct message between the involved network functions. This is because the information first needs to be sent to (or updated in) the state repository before it eventually can be delivered in a second step to the target network function.
The overhead becomes even larger if direct signalling needs to be exchanged in addition between network functions. While claims have been made that direct signalling can be avoided, the actual solution has not been described in sufficient detail yet.
Observation 7: Using a state repository to pass information between network functions doubles overhead compared to passing state information using a direct message. The overhead becomes even larger if direct signalling needs to be exchanged in addition between network functions.
2.4.3	Summary
The above observations emphasize that various areas (e.g. selection of network functions, avoidance of race conditions, restoration and recovery in stateless systems, etc.) require further and thorough study. Stateless architectures (or enablers for the same) that have been introduced into TR 23.799 have not addressed these areas.
Addressing these areas is not only important to bridge gaps in these solutions but will also help to evaluate whether the promises of stateless network functions still hold when also more complex (yet real) scenarios are considered.
Conclusion 4: Various important areas of stateless network functions (e.g. selection of network functions, avoidance of race conditions, restoration and recovery in stateless systems, efficiency of information transfer via a state database, etc.) require further and more thorough study. Only once these gaps have been bridged the pros/cons of stateless functions (and enablers for the same such as a standardized state repository) can be evaluated.
2.7	Conclusion
The following conclusions have been made throughout the paper:
-	Conclusion 1: Separate repositories should be used for storage of subscription profile and session state information.
-	Conclusion 2: Local state repositories, i.e. each NF has its own state repository to store its own state information, is preferred over a centralized/common State Repository as a result of the following observations:
-	With a centralized state repository the latency to access state information will be higher for some of the NFs, which in turn will also increase the delay for completing transactions carried out by those network functions.
-	A centralized state repository increases the cost of information transport for all NFs.
-	The NFs may belong to different administrative domains, having a centralized state repository for all the NFs in the CN may not be practical.
-	The reduction and hence saving in overall state information, by storing only one copy of the overlapping state information in a common/centralized state repository is not significant.
-	Conclusion 3: The details of a potential interface between a NF and its state repository should be left to implementation.
-	Conclusion 4: Various important areas of stateless network functions (e.g. selection of network functions, avoidance of race conditions, restoration and recovery in stateless systems, efficiency of information transfer via a state database, etc.) require further and more thorough study. Only once these gaps have been bridged the pros/cons of stateless functions (and enablers for the same such as a standardized state repository) can be evaluated.
In other words, the notion of separating state from network functions (and enablers for the same such as a normative state database) based on a standardized interface towards a data layer or data base are not a viable basis for an agreement on the next generation core network architecture at this point in time.
In conclusion, it is proposed to leave the decision to separate state (e.g. UE context information) from a given network function and how to design the interface between that network function and its state repository to implementation.
Proposal
It is proposed to capture the open issues in TR 23.799.
* * * 1st Change * * * *
[bookmark: _Toc461542563][bookmark: historyclause]6.7.5	Solution 7.5: Control Plane Interconnection model with a Data Layer
This is a solution for key issue #7 and key issue #9.
The main principle of this solution is to store (expose) UE related context data to a data layer. This can include both near real-time storage of structured data and opaque data.
It addresses Key Issue #7 as it impacts how Network functions interact with each other.
It addresses Key Issue #9 as it impacts how and what data can be exposed within MNO domain and to 3rd party.
[bookmark: _Toc461542564]6.7.5.1	Architecture description
[bookmark: _Toc461542565]6.7.5.1	Reference model
This solution assumes the following reference model for non-roaming and roaming Data Layer interconnection model.

Figure 6.7.5.1-1: Non-roaming Data Layer interconnection model

Figure 6.7.5.1-2: Roaming Data Layer interconnection model

Figure 6.7.5.1-3: Data Sharing between Core Network Nodes
NOTE: The location of the Data Layer is up to deployments to decide.
It should be noted that access to Context Data and Subscriber Data have different characteristics in terms of expected location, frequency of data access etc. While the subscriber data can be placed in a centralized location (e.g. NG SDM/HSS), context data (context data for a certain network function) should be placed close to the network function to reduce latency for data access and to meet the necessary performance criteria. If context data is placed close to a network function for performance criteria reasons, then context data for this network function (e.g. CCF) can only be exchanged via the data layer if the involved functions (e.g. two CCFs) are both located close to the data layer.

NG8:	Reference point between the Core Network Functions (e.g. CCF, PCF) and the Subscriber Repository.
NGx:	Reference point between the Core Network Functions (e.g. CCF, PCF) and the Data Layer.
[bookmark: _Toc461542566]6.7.5.1	Architecture principles
Editor's note:	This clause will contain e.g., terminology, overview, architecture description of the solution.
Following are the architecture principles that are proposed for the control plane interconnection model:
1.	The solution supports distributed and near real time storage of data as primary or secondary storage, both for structured and opaque data.
2.	NFs require direct message centric interfaces with other NFs in addition to data centric interface via the Data Layer. This statement implies that messages can be exchanged (e.g. create session request, update session request) via network functions with direct interface.

Editor’s note: In case two (or more) NFs interact by direct messaging (e.g. to send a create session request) and via the data layer (e.g. to send location information): how can it be ensured that the information transferred via the data layer reaches the target function before the direct messaging reaches the target function? Alternatively (if this cannot be ensured), it is FFS which information can be safely send via the data layer in parallel to direct messaging without causing race conditions, e.g. because the target function operates on this information such as PCF, which takes ULI into account for policy decisions).

Allows an option to store Network functions UE context into data repository.
NOTE: Whether the control plane function is stateless is a implementation decision.
Editor's note:	The definition of “stateless NF” is FFS.
Editor's note:	Slicing aspects are FFS
Editor's note:	The solution illustrates user location information (e.g. TAI, Cell ID) can be stored and exchanged via Data Layer. Identification of all other information that can be exchanged via Data Layer is FFS. This also depends on the outcome of 5G architecture, relevant solutions (i.e. needed context transfer information) for Key Issues such as MM, SM, QoS. Network Slicing etc.
[bookmark: _Toc461542567]6.7.5.2	Function description
[bookmark: _Toc461542568]6.7.5.2.1	Data Layer (DL)
The Data Layer (DL) consists of session data. It provides the following services:
1)	distributed and near real-time storage of structured data (i.e. allowing the control plane function to create, read, update, delete their own data and subscribe to notifications upon data change); In addition, opaque data can also be stored by the network functions. the network functions can store context as a secondary storage and also optionally use it for primary storage. Whether the network function uses the data layer for primary storage for context can be an implementation choice.
Editor's note:	The details of the data layer (e.g. when to synchronize state in specific CP procedures) is FFS.
2)	possibility of data sharing between same type of Core Network Functions as in Figure 6.7.5.1-1 and different type of Core network functions as in Figure 6.7.5.1-3; In the latter case, it is also assumed that only the network function that stored the data owns the data (e.g. a CCF creates, updates, deletes the own data such as ULI) and other network functions can have access it or subscribe to notifications upon data change (i.e. PCF reads the ULI information).

NOTE: 	This data ownership rule implies that sharing of data across network functions of different type can only be used for data that is provided/modified by a single network function type only (e.g. ULI provided by MM function).
Editor’s note: In case NFs interact by direct messaging and via the data layer: how can it be ensured that the information transferred via the data layer reaches the target function before the direct messaging reaches the target function?

3)	data redundancy.
Editor's note:	How the solution supports data redundancy is FFS.
[bookmark: _Toc461542569]6.7.5.2.2	Core Control Plane Function (CCF)
A network implementation based on Network Functions only relying on standardised state information and using the data layer as the primary and only storage for their state information could enable the following example scenario illustrated below:
At first UE attach RAN selects a CCF in the selected slice based e.g. on load balancing algorithms, For subsequent transactions RAN routes the NAS signalling from the UE to a CCF in the serving network slice based on the NSSAI provided by the UE and according the same logic, e.g. based on load balancing algorithms. If the CCF is stateless in a slice that receives the NAS message, it will retrieve the user’s Context Data from the Data Layer and will execute the transaction.
Editor's note:	How the stateless CCF is selected is FFS. How to ensure that the same CCF is selected for subsequent transactions from the UE/RAN or other network functions (while a previously selected CCF still holds state for the same UE is FFS.

Editor's note:	How state submission/retrieval to/from the data layer is coordinated with direct messages between NFs is FFS.
Editor's note:	Potential race conditions between concurrent CP transactions for the same UE and how they can be resolved is FFS.
[bookmark: _Toc461542570]6.7.5.3	Example Call flows
NOTE: The following example call flows are presented for illustration of the concept of the exposure of UE related data and the scenarios the data layer could be used for.
[bookmark: _Toc461542571]6.7.5.3.1	 Detach/Attach scenario
Figure 6.7.5.3.1-1 shows the example call flow of a UE re-attaching in the same PLMN to which it was previously attached. As part of the previous Attach scenario, the Core Control Plane Functions (CCF) stored UE related data (including subscription data downloaded from the SDM) in the Data Layer.
During the next Attach, the new CCF serving the UE (CCF in the call flow) accesses the data stored in the Data Layer and proceeds with the Attach procedure without necessarily requiring the signalling towards the NG SDM.

Figure 6.7.5.3.1-1: Detach/Attach
[bookmark: _Toc461542572]6.7.5.3.2	 CCF Failover
Figure 6.7.5.3.2-1 shows the example call flow of a UE initiating signalling towards the Core Control Plane Function (e.g. Mobility Management or Session Management signalling) after a CCF failure.
The new CCF serving the UE (CCF 2 in the call flow) accesses the data stored in the Data Layer and proceeds with the UE request successfully.

Figure 6.7.5.3.2-1: CCF Failover
Editor's note:	How recovery and restoration can be supported while a network function holds state (i.e. before it writes its state to the data layer) for scenarios where multiple network functions are involved (e.g. as part of a procedure involving multiple network functions) is FFS.

[bookmark: _Toc461542573]6.7.5.3.3	 Successive UE transactions served by different CCFs
Figure 6.7.5.3.2-1 shows the example call flow of a UE initiating consecutive UE transactions over time, involving different CCPFs (e.g. resulting from scale-in or scale-out operations).
The CCF serving the second UE request (CCF 2 in the call flow) accesses the data stored in the Data Layer by the previous CCF (CCF1 in the call flow) and proceeds with the UE request.
Editor's note:	Potential race conditions between concurrent CP transactions for the same UE and how they can be resolved is FFS.

Figure 6.7.5.3.3-1: Successive UE transactions served by different CCFs
[bookmark: _Toc461542574]6.7.5.3.1	 UE location reported to PCF
Figure 6.7.5.3.4-1 shows the example call flow for a UE location being reported to PCF, CEF.
User Location (changes) are notified to the PCF, CEF (e.g. for exposure) via subscribe/notify procedure. Access to read/subscribe to User Location needs to be controlled by the VPLMN to enable a network entity from a particular PLMN to access the ULI of a particular UE under the control of the CCF and/or the data layer.

Figure 6.7.5.3.3-1: User location Information subscription and notification
[bookmark: _Toc461542575]6.7.5.3.5	 Context Clean-up scenario
Figure 6.7.5.3.5-1 shows the example call flow of a UE context clean-up triggered by CCF.

Figure 6.7.5.3.5-1: Context Cleanup
[bookmark: _Toc461542576]6.7.5.4	Solution evaluation
Editor's note:	This clause will contain evaluation on the system impacts, e.g., UE, access network and non-access network.

* * * End of changes * * * *
3GPP
SA WG2 TD

image2.wmf
U

E

C

C

F

A

C

C

F

B

S

e

r

v

i

c

e

R

e

q

u

e

s

t

E

x

e

c

u

t

e

S

e

r

v

i

c

e

R

e

q

u

e

s

t

P

r

o

c

e

d

u

r

e

D

e

t

a

c

h

R

e

q

u

e

s

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

1

oleObject2.bin

image3.emf
Core Control

Plane Function 1

Context Data

NGx

Data Layer

Core Control

Plane Function 2

NGx

oleObject3.bin

image4.emf
NG8

Core Control Plane

Function

Subscriber

Data

NG1/2

Subscriber

Repository

VPLMN HPLMN

Context

Data

NGx

Data Layer

oleObject4.bin
NG8

VPLMN

HPLMN

image5.emf
Context Data

Subscriber

Repository

NGx

Data Layer

NGx

CCF2

(Core

Control

function)

PCF

(Policy

control

function)

NGx

CCF1

(Core

Control

function)

NG8

NG8

Subscriber Data

oleObject5.bin

image6.emf
UE CCF1

2. Attach Request

5. Attach Accept

6. Attach

 Complete

Data Layer

3. Read

4. Authentication / Security

7. Update

CCF2

1. Detach procedure

1a. Read

1b. Update

oleObject6.bin
Robert’s Home (E)Node B

Peter’s UE

Peter’s and Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

Operator adds corresponding CSG subscription info

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Peter’s HPLMN operator (via Robert’s HPLMN operator) to allow Peter access to Robert’s Home (E)Node B but Peter’s HPLMN operator denies (e.g. because CSG is not supported in Peter’s HPLMN)

Peter’s HPLMN

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Robert’s HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Peter’s HPLMN

CSS

Update VCSG Location

Subscriber Data

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

UE

CCF1

2. Attach Request

5. Attach Accept

6. Attach Complete

Data Layer

3. Read

4. Authentication / Security

7. Update

CCF2

1. Detach procedure

1a. Read

1b. Update

image7.emf
UE CCF1

1. UE request

2. Response (OK)

Data Layer

2. Read

4. Update

CCF2

oleObject7.bin
Robert’s Home (E)Node B

Peter’s UE

Peter’s and Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

Operator adds corresponding CSG subscription info

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Peter’s HPLMN operator (via Robert’s HPLMN operator) to allow Peter access to Robert’s Home (E)Node B but Peter’s HPLMN operator denies (e.g. because CSG is not supported in Peter’s HPLMN)

Peter’s HPLMN

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Robert’s HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Peter’s HPLMN

CSS

Update VCSG Location

Subscriber Data

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

UE

CCF1

1. UE request

2. Response (OK)

Data Layer

2. Read

4. Update

CCF2

image8.emf
UE CCF1

1a. UE request A

1c. Response

Data Layer

1b. Read

1d. Update

CCF2

2a.

 UE request A

2c. Response

2b. Read

2d. Update

oleObject8.bin
Robert’s Home (E)Node B

Peter’s UE

Peter’s and Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

Operator adds corresponding CSG subscription info

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Peter’s HPLMN operator (via Robert’s HPLMN operator) to allow Peter access to Robert’s Home (E)Node B but Peter’s HPLMN operator denies (e.g. because CSG is not supported in Peter’s HPLMN)

Peter’s HPLMN

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Robert’s HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Peter’s HPLMN

CSS

Update VCSG Location

Subscriber Data

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

UE

CCF1

1a. UE request A

1c. Response

Data Layer

1b. Read

1d. Update

CCF2

2a. UE request A

2c. Response

2b. Read

2d. Update

image9.emf
PCF

2a. Loc. Reporting

(e.g. TAI, cell ID)

Data Layer

1a. Read/

Subscribe

CEF

2b. Notify

2c. Notify

CCF

1b. Read/Subscribe

oleObject9.bin
PCF

1b. Read/Subscribe

2a. Loc. Reporting
(e.g. TAI, cell ID)

Data Layer

1a. Read/Subscribe

CEF

2b. Notify

2c. Notify

CCF

image10.emf
Data

Layer

CCF

1. Context Clean up

trigger (e.g. from SDM)

2. Update(UE context

cleanup)

oleObject10.bin
Robert’s Home (E)Node B

Peter’s UE

Peter’s and Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

Operator adds corresponding CSG subscription info

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Peter’s HPLMN operator (via Robert’s HPLMN operator) to allow Peter access to Robert’s Home (E)Node B but Peter’s HPLMN operator denies (e.g. because CSG is not supported in Peter’s HPLMN)

Peter’s HPLMN

Robert’s Home (E)Node B

Peter’s UE

Peter’s VPLMN = Robert’s HPLMN

(E)Node B

Serving Node

HLR/HSS

Attach

Update Location

Subscriber Data

Attach

Subscription check: Peter is not allowed to attach to Robert’s Home (E)Node B

Negative response

Robert asks Robert’s HPLMN operator to allow Peter access to Robert’s Home (E)Node B

Peter’s HPLMN

CSS

Update VCSG Location

Subscriber Data

Subscriber Data update

Attach

Peter retries

Subscription check: ok

Positive response

CCF

Data Layer

1. Context Clean up trigger (e.g. from SDM)

2. Update (UE context cleanup)

image1.wmf
U

E

C

C

F

A

C

C

F

B

U

P

F

U

E

i

s

i

n

C

N

I

d

l

e

s

t

a

t

e

U

p

l

i

n

k

d

a

t

a

a

v

a

i

l

a

b

l

e

S

e

r

v

i

c

e

R

e

q

u

e

s

t

D

o

w

n

l

i

n

k

d

a

t

a

a

v

a

i

l

a

b

l

e

D

o

w

n

l

i

n

k

d

a

t

a

n

o

t

i

f

i

c

a

t

i

o

n

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

5

.

1

oleObject1.bin

