

SA WG2 Temporary Document
Page 3

SA WG2 Meeting #106	S2-143890
17 – 21 November, San Francisco, USA	

Source:	Samsung
Title:	Prose Restricted Discovery: “Quick Unfriend”
Document for:	Approval
Agenda Item:	7.13
Work Item / Release:	eProse_Ext
Abstract of the contribution:
During SA2#105, an FFS was added in the list of topics to be discussed for restricted discovery:
-	It is FFS how changes in the discovery permissions in the ProSe Application Server can be reflected on the already assigned Discovery Filters.
In this contribution we try to progress this topic. 
1. Introduction
During SA2#105, an FFS was added in the list of topics to be discussed for restricted discovery:
· It is FFS how changes in the discovery permissions in the ProSe Application Server can be reflected on the already assigned Discovery Filters.
The issue was offline also named “quick unfriend”. The issue is how to ensure e.g. John can quickly unfriend Peter (e.g. after they have had a fight), thus ensuring that Peter is really not able to detect John is in the neighbourhood anymore.
In section 2 we try to identify aspects on which we assume different solutions should be compared. Next we describe two potential solutions: 
1. AS configures “QuickPersmissionChange” (Section 3)
2. Work with “Change-Id” as part of discovery announcement (Section 4)
In section 5 we compare both solutions, and ask SA2 to make a decision on the way forward.
2.  Comparison aspects
We assume any solution would be evaluated on following 3 aspects:
· Speed of “unfriend”: 
Currently there is no requirement formulated on the speed of the “unfriend”. E.g. when John no longer wants to be discovered by Peter, how quickly should the new situation be realised ? E.g. is it still acceptable if Peter can discover John for 1 more second, 10 more seconds or even still one hour ? 
· Scalability:
We assume any solution is not allowed to create massive overhead. E.g. a solution based on changing the Prose Code and having to immediately inform all allowed monitoring UE’s of the new code, seems not a good solution since it might create huge network signalling overhead depending on the number of allowed monitors (i.e. the number of friends).
· Complexity:
It would be nice if the solution does not bring too much additional complexity compared to the restricted discovery solution without this quick unfriend functionality.
Note that there may be a tradeoff between the different aspects: a quick solution realising massive overhead, or an extremely slow solution with no additional overhead might both not be acceptable.
3.  Sol 1: AS configures “MaxPermissionChangeDelay”
Before a monitoring UE has sent a match request, a monitoring UE having a Discovery Filter for a longer period (i.e. long TTL) is in itself not a problem for enabling a quick unfriend, as long as the network did not provide the corresponding Target Restricted ProSe App User ID for the discovery filter. I.e. if a discovery filter is configured with a TTL of one hour and the discovery allowance has to be revoked after 30minutes, as long as the network did not provide the corresponding Target Restricted Prose App User ID to the monitoring UE, the monitoring UE will have to perform a match request at which point in time the AS can check the permission and, if no permission, deny the match.
If we want to enable a certain application to realise quick “unfriend actions”, the AS should be able to inform the PF about this request. This could be realised by including a “MaxPermissionChangeDelay” in the Authentication Response as show in the figure below:



As an example, if the MaxPermissionChangeDelay is e.g. 5 minutes, the PF could decide to either provide the Target Restricted Prose App User ID in the monitoring response with a maximum TTL of 5 minutes, or not provide the Target Restricted Prose App User ID in the monitoring response i.e. relying on the match request. 
Similarly, in order to enable a quick unfriend after a monitoring UE has received a positive match response, the match response should not use a long “validity timer”. Thus also for this case, a MaxPermChangDelay parameter can be used in the Auth Resp for the match procedure.
4. Sol 2: Use of “Change-Id”
A second potential solution we identified is based on the introduction of a additional Id in the discovery message e.g. called “Change-Id”. 
Figure 1 shows the PC_5 discovery message as currently defined by CT1 (top), and a potential updated format for restricted discovery including a Change-Id (bottom):


Figure 1: Introduction of Change-Id

If the announcer wants to quickly unfriend one of his friends, the following could e.g. happen:
1) The announcing UE contacts the PF to indicate it wants to perform a new announcement for a certain Application-ID;
2) PF/AS allocate a new Prose Application Code with the remaining validity time to the UE;
3) Announcer starts to announce the new Prose Application Code. In the “Change-Id” the announcer indicates an identity that will trigger monitoring UE’s that are monitoring for the original Prose Application Code to initiate a new monitoring request to obtain new monitoring information.
4) Any monitoring UE will (when monitoring) check if any received discovery message meets the filter criteria for the Prose Application Code (as in Rel-12). In addition, any monitoring UE will also check whether any received discovery message meets the Change-Id that the UE monitoring UE computed/was configured with for this Prose filter.
5) If a monitoring UE finds a match on the Change-Id but not on the Prose Application Code, it will initiate a new monitoring request for the Application Id + Target Restricted Prose App User ID(s) that it originally used to obtain this filter. When the PF receives this request, 3 situations may exist:
a) 	The announcer did perform an unfriend, and this UE is still a friend. The PF will provide a new filter with updated Prose Application Code to this monitoring UE.
b) 	The announcer did perform an unfriend, and this UE is no longer a friend. The PF will e.g. respond that monitoring is not permitted.
c) 	The announcer did not perform an unfriend; PF will indicate to the UE that it should continue to use same filter.
Multiple alternatives can be discussed of what the Change-Id would contain: The Change-Id could e.g. be based on some kind of hash from the old Prose Application Code, but care has to be taken that also scenarios in which multiple unfriends follow each other, the solution still works. Also a hash of the Restricted Prose App User ID of the announcer, or simply a PF configured Change-Id (as part of the monitoring filter) could be considered.
It will require further discussion to determine the size of the Change-Id. Both too short and too long do not work:
· Too short: 
If e.g. the Change-Id is only 1 bit, then 50% of all monitoring UE’s may think their code has changed and initiate a new monitoring request i.e. high “false alarm” rate. As a result, case c) indicated above would happen frequently.
· Too long: 
If the Change_Id is e.g. 100 bits, then the Change-Id might almost uniquely identify a previous Prose Application Code or Restricted Prose App User Id, which defeats the purpose of the unfriend action.
5. Solution comparison
In table 1 we compared the two solutions described above on the aspects identified in section 2: 
	
	Sol 1: AS configures “MaxPermissionChangeDelay”
	Sol 2: Use of Change-Id

	Speed of unfriend
	+: Unfriend delay is configured by AS, and can even be set to zero
	+: An „unfriend“ can be quick: 
announcer needs to get new code
and closeby friends need to obtain an updated filter

	Scalability
	+: Highly scalabale since no additional signalling required at time of unfriend action
-: May restrict the usage of providing the Target Restricted Prose App User Id in the monitoring response for certain applications/setting of long validity timer values in match response, thus increasing signalilng load for match request signalling.
	+: Only UE’s in the neighbourghood of the announcer will try to obtain new monitoring information
-: If the Change-ID is small, overhead due to unnecessarily triggered monitoring request updates (false alarm) may increase

	Complexity/Impact
	+: Small
	-:  Relatively Large:
Reduction of Application Code Size
Identification of updated announcement request (FFS)
Addition of Change-Id in filter parameters (FFS)



Table 1: solution comparison
6. Proposals
SA2 is kindly requested to discuss how to continue on the issue of quick unfriend. We identified 3 alternative ways forward:
1) Solution 1: Enable AS to configure a “MaxPermissionChangeDelay”
2) Solution 2: Introduction of Change-Id in discovery message
3) Solution 3: “Do nothing”: i.e. remove FFS without introducing new functionality.
· In this solution 3, the unfriend action will be delayed at maximum according to the TTL configured for the monitoring UE, if the monitoring UE received the target Restricted Prose App User ID in the monitoring request.
If any solution can be selected, Samsung will be happy to provide a CR for updating TR23.713.

3GPP
SA WG2 TD

image2.emf
Message

Type (8)

Prose Application Code (184) MIC (32)

Message

Type (8)

Prose Application Code (184-x) MIC (32) Change-Id (x)

UTC

(8)

UTC

(8)


oleObject2.bin
Message
 Type (8)


Prose Application Code (184)


MIC (32)


Message
 Type (8)


Prose Application Code (184-x)


MIC (32)


Change-Id (x)


UTC
(8)


UTC
(8)



image1.emf
UE

ProSe 

Function

HSS

ProSe App 

Server

VPLMN HPLMN

1. Discovery Req. 

(Restricted ProSe App User ID, UE Identity, 

command=monitor, Discovery Type, 

Application ID, Application Transparent 

Container)

2. Discovery Auth

10. Discovery Resp. (Discovery Filter, TTL)

11. Radio Resource 

Allocation

0. Provide:ProSe Disc UE ID; obtain:its own Restricted ProSe App User ID. 

Provide: Application Layer User IDto be discovered; obtain:Restricted ProSe App User IDof the announcing UE . 

3. Auth Req. (Restricted ProSe App User ID, indicator, 

Application Transparent Container)

9. Monitor Resp. (ProSe Code, validity timer)

5. Retrieval of ProSe Code(s)

Other PLMNs

ProSe 

Function

6. Monitor Req. (Restricted ProSe App User ID, UE 

Identity, Target ProSe Disc UE ID, Application ID, 

Target Restricted ProSe App User ID)

4. Auth Resp. (ProSe Disc UE ID, indicator, 

N pairs of Target ProSe Disc UE ID

–

Target Restricted ProSe App User ID, 

MaxPermChangeDelay)

8.a Auth Req. (Restricted ProSe 

App User ID , indicator,  Target 

Restricted ProSe App User ID)

8.bAuth Resp. (ProSe Discovery 

UE ID, indicator, Target ProSe 

Disc UE ID, 

MaxPermChangeDelay)

7. Retrieval of ProSe Code


oleObject1.bin
UE


ProSe Function


HSS


ProSe App Server


VPLMN


HPLMN


1. Discovery Req. 
(Restricted ProSe App User ID, UE Identity, command=monitor, Discovery Type, 
Application ID, Application Transparent Container)


2. Discovery Auth


10. Discovery Resp. (Discovery Filter, TTL)


11. Radio Resource Allocation


0. Provide: ProSe Disc UE ID; obtain: its own Restricted ProSe App User ID. 
Provide: Application Layer User ID to be discovered; obtain: Restricted ProSe App User ID of the announcing UE . 



