3GPP TSG SA S2#9

S2-99A62

London, UK, October 25-29, 1999

TSG-RAN Working Group 2　　 TSGR2#7(99)D16

Malmö, Sweden, September 20th to 24th, 1999

Source:
RAN WG2

Title:
Liaison statement on PPP Encapsulation

To:
TSG SA WG2
During RAN WG2 #7, we have discussed the PPP encapsulation function. The attached proposal (R2-99b70) includes the followings;

(1) The data without Flags should be transferred on PDCP.

(2) The original data after removal of the octet stuffing and bit stuffing, should be transmitted on PDCP.

(3) UE and NW may be implemented the function to remove LCP Echo Request on PDCP.

(4) When TCP/IP packets are transmitted on PPP, the TCP/IP header compression negotiation should be done in PPP layer instead of PDCP layer.

We kindly ask SA2 to inform us whether this concept is acceptable or not for the reduction of information sent on the PDCP layer and which layer should support this kind of functions from the system architecture point of view.

Actual questions are the followings;

(1) Is this concept acceptable from the system architecture point of view?

(2) Which layer should support the function to remove the Flags?

(3) Which layer should support the function to remove the octet/bit stuffing from the original data part?

(4) Which layer should support the function to remove LCP Echo Request?

(5) Which layer should support the function to negotiate the TCP/IP header compression when TCP/IP packets are transmitted on PPP?

TSG-RAN Working Group 2　　

 TSGR2#7(99)b70

Malmö, Sweden, September 20th to 24th, 1999

Agenda Item:

Source:
NTT DoCoMo
Title:
PPP over PDCP

Document for:
Discussion
1 Introduction
In this contribution, we studied PPP encapsulation into PDCP and negotiation of TCP/IP header compression in order to realize the packet communication using PDP Type = PPP.

2 Discussion

2.1 PPP encapsulation into PDCP

PPP frame format is illustrated in Figure 1.

[image: image1.wmf]A

d

d

r

e

s

s

(

1

)

C

o

n

t

r

o

l

(

1

)

P

r

o

t

o

c

o

l

(

2

)

F

l

a

g

(

1

)

I

n

f

o

r

m

a

t

i

o

n

(

0

〜

M

R

U

)

F

C

S

(

2

o

r

4

)

F

l

a

g

(

1

)

U

n

i

t

:

O

c

t

e

t

s

M

R

U

:

M

a

x

i

m

u

m

R

e

c

i

e

v

e

U

n

i

t

Figure 1: PPP frame format

Flag (7Eh) is the information that is used in order to appreciate a border of PPP frame. So Flag needs not to be encapsulated into PDCP. In other words, the informations from Address field to FCS field should be encapsulated into PDCP.

But, Address and Control field may not be transferred according to negotiating LCP parameter (ACFC ; Address Control Field Compression). In addition, Protocol field may become 1 octet according to negotiating LCP parameter (PFC ; Protocol Field Compression).

2.1.1 Octet stuffing procedure

In asynchronous transfer or octet synchronous transfer, if 7Eh is involved in the binary data from Address field to FCS field, the receiver misunderstands the end of a PPP frame. So the transmitter performs octet stuffing procedure used control escape octet (7Dh) in order to maintain the transparency of PPP frame.

In addition, the transmitter also performs octet stuffing procedure for 7Dh involved in the binary data from Address field to FCS field.

Octet stuffing procedure may be performed for the binary data from 00h to 1Fh according to negotiation result of LCP parameter (ACCM ; Async-Control-Character-Map).

[image: image2.wmf]Original data Octet stuffing data

7Eh <

--

> 7D5Eh

7Dh <

--

> 7D5Dh

00h <

--

> 7D20h

01h <

--

> 7D21h

･

･

･

1Fh <

--

> 7D3Fh

91h <

--

> 7DB1h

93h <

--

> 7DB3h

Figure 3: Octet stuffing procedure

Therefore, the maximum length of octet stuffed data may become (8+MRU)*2 octets in a theory.

When we suppose that one PPP frame is encapsulated into one PDCP frame, the original data which removed control escape octets should be transmitted on PDCP to save the radio resources.

2.1.2 Bit stuffing procedure

In bit synchronous transfer, it is necessary for bit pattern same as Flag (01111110) not to appear in the binary data from Address field to FCS field in order to maintain the transparency of PPP frame. Concretely, the transmitter examines the entire binary data between the two Flag. A “0” bit is inserted after all sequences of five contiguous “1” bits. On reception, any “0” bit that directly follows five contiguous “1” bits is discarded.

When we suppose that one PPP frame is encapsulated into one PDCP frame, the original data which removed the stuffed bits should be transmitted on PDCP to save the radio resources..

2.1.3 Treatment of LCP Echo Request/Reply

When there is not a packet which should transmitted, PPP having a function to transmit LCP Echo Request by a period for dozens of seconds exists. For reasons of the point of view of saving of the network and radio resource and the charge of data quantity, PPP had better not transmit LCP Echo Request periodically. UE (NW) may be implemented to terminate LCP Echo Request sent from DTE (External NW) .
2.2 Negotiation of TCP/IP header compression

Negotiation of TCP/IP header compression is done in IPCP(IPv4) or IPv6CP(IPv6) in PPP, when TCP/IP packets are transmitted on PPP. XID exchange of PDCP should not be used as negotiation of TCP/IP header compression.
3 Conclusion
The above study result about PDP Type=PPP is summarized as follows.

(1) The entire data between the two Flag should be transferred on PDCP.

(2) The original data which octet stuffing procedure and bit stuffing procedure are not performed should be transmitted on PDCP.

(3) UE and NW may be implemented not to transmit LCP Echo Request on PDCP.

(4) When TCP/IP packets are transmitted on PPP, TCP/IP header compression negotiation should be done in PPP layer instead of PDCP layer.

_999376273.unknown

_999419304.unknown

