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6.5
AI/ML based Automotive Networked Systems 
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6.5.6 
Potential New Requirements needed to support the use case

Table 6.5.6-1 provides example ML models (sizes and DL data rates) that are considered for the use-cases above and Table 6.5.6-2 outlines latency requirements.  It is assumed that a maximum of 10% of the (full) model size is exchanged among the participating systems.
Table 6.5.6-1: ML Networks/models and potential DL data rates

	DNN model 
	32 bits per parameter

	
	Full Model (MBytes)
	Exchanged data (Mbytes)
[10% of full model]
	Max DL user data rate (Mbps)

	1.0 MobileNet-224 [w]
	16.8
	1.68
	13.4

	SSD-ResNet34 [x]
	81
	8.1
	64.8

	SSD-MobileNet-v1 [y]
	27.3
	2.37
	21.8

	MASK R-CNN [z]
	245
	24.5
	~100

	DLRM [zz]
	400
	40.0
	10


Table 6.5.6-2: Potential Latency Requirements

	    User application
	Potential Latency Requirements

	
	

	Exchanged data – 
Download latency

	Vehicle Detects Fault and Pulls Over to Avoid Accident
	
	~500ms – 1sec

	Roadside Camera Detects Road Hazard and Warns Smart City Network
	
	~500ms – 1sec

	On-Coming Traffic Detects Hazard and Avoids Accident
	
	~500ms – 1sec

	Video recognition
	
	~500ms – 1sec

	Smart City Detect Accident and Issues Local Warning
	
	~up to few sec

	Car Manufacturer/Insurance warned about fault
	
	Up to few mins


Requirements:

[P.R.6.5-001] The 5G system shall be able to support downloading of data with a maximum size of ~2-40 MB to update the local AI/ML model with latency up to 500 ms – 1 s.

[P.R6.5-002] The 5G system shall be able to support downloading of data with a maximum size of ~2-40 MB to update the local AI/ML model with (user experienced) DL data rate of up to 100 Mbps .

[P.R.6.5-003] The 5G system shall be able support downloading of data to update the local AI/ML model with communication service availability up to 99.999 %.

