 STYLEREF ZA
2
Error! No text of specified style in document.

3GPP TSG-SA WG1 Meeting #93e
S1-211261
Electronic Meeting, 22 February – 04 March 2021
 (revision of S1-21xxxx)
Title:
Editorial Update for Compressed Federated Learning for image/video processing

Agenda Item:
7.4.1
Source:
LG Electronics

Contact:
Myung-Hee Lee (myungheeman.lee@lge.com)
Abstract: This paper is proposed to update Use Case described in clause 7.2 of TR 22.874 with the focus on some necessary requirements for AI/ML feature at UE or at learning agent (in the cloud) can minimize or avoid service disruption.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 22.891, Feasibility Study on New Services and Markets Technology Enablers

[3]
3GPP TR 22.863, Feasibility study on new services and markets technology enablers for enhanced mobile broadband

[4]
3GPP TS 22.261, Service requirements for the 5G system

[5]
3GPP TS 22.104, Service requirements for cyber-physical control applications in vertical domains
[6]
3GPP TS 23.273, 5G System (5GS) Location Services (LCS); Stage 2
[7]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, in Proc. NIPS, 2012, pp. 1097–1105.
[8]
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2014, arXiv:1409.1556. [Online]. Available: https://arxiv.org/abs/1409.1556
[9]
C. Szegedy, et al., “Going deeper with convolutions”, in Proc. CVPR, 2015, pp. 1-9.
[10]
Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, Junshan Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing”, Proceeding of the IEEE, 2019, Volume 107, Issue 8.
[11]
Jiasi Chen, Xukan Ran, “Deep learning with edge computing: A review”, Proceeding of the IEEE, 2019, Volume 107, Issue 8.
[12]
I. Stoica et al., “A Berkeley view of systems challenges for AI”, 2017, arXiv:1712.05855. [Online]. Available: https://arxiv.org/abs/1712.05855
[13]
Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the cloud and mobile edge”, ACM SIGPLAN Notices, vol. 52, no. 4, pp. 615–629, 2017.
[14]
E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learning model co-inference with device-edge synergy”, in Proc. Workshop Mobile Edge Commun. (MECOMM), 2018, pp. 31–36.
[15]
3GPP TR 38.913, Study on Scenarios and Requirements for Next Generation Access Technologies (Release 15)
[16]
B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud robotics and automation,” IEEE Transactions on automation science and engineering, vol. 12, no. 2, pp. 398–409, 2015.
[17]
Huaijiang Zhu, Manali Sharma, Kai Pfeiffer, Marco Mezzavilla, Jia Shen, Sundeep Rangan, and Ludovic Righetti, “Enabling Remote Whole-body Control with 5G Edge Computing”, to appear, in Proc. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Available at: https://arxiv.org/pdf/2008.08243.pdf
[18]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE CVPR, Jun. 2016, pp. 770-778.

[19]
A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” 2017, arXiv:1704.04861. [Online]. Available: https://arxiv.org/abs/1704.04861
[20]
B. Taylor, V. S.Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive deep learning model selection on embedded systems,” in Proc. ACM LCTES, 2018, pp. 31–43.
[21]
G. Shu, W. Liu, X. Zheng, and J. Li, “IF-CNN: Image-aware inference framework for CNN with the collaboration of mobile devices and cloud”, IEEE Access, vol. 6, pp. 621–633, 2018.

[22]
D. Stamoulis et al., “Designing adaptive neural networks for energy-constrained image classification”, in Proc. ACM ICCAD, 2018, Art. no. 23.
[23]
Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, In ICML., 2015.
[24]
C.-J. Wu et al., “Machine learning at facebook: Understanding inference at the edge,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2019, pp. 331–344.
[25]
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, “Efficient processing of deep neural networks: A tutorial and survey”, Proceeding of the IEEE, 2017, Volume 105, Issue 12.
[26]
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, May 2015.

[27]
“An All-Neural On-Device Speech Recognizer”, March 12, 2019, Posted by Johan Schalkwyk, https://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html

[28]
Yanzhang He, etc., “Streaming End-to-end Speech Recognition for Mobile Devices”, 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019)
[29]
3GPP TS 22.243: "Speech recognition framework for automated voice services; Stage 1".
[30]
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, “Communication-efficient learning of deep networks from decentralized data”, Proc. of the International Confe rence on Artificial Intelligence and Statistics, Apr. 20 17. [Online]. Available: https://arxiv.org/abs/1602.05629
[31]
“Federated Learning”, https://justmachinelearning.com/2019/03/10/federated-learning/
[32]
T. Nishio and R. Yonetani, “Client selection for federated learning with heterogeneous resources in mobile edge”, 2018, arXiv:1804.08333. [Online]. Available: https://arxiv.org/abs/1804.08333
[33]
E. Park et al., “Big/little deep neural network for ultra low power inference”, in Proc. 10th Int. Conf. Hardw./Softw. Codesign Syst. Synth., 2015, pp. 124–132.
[34]
Nguyen H. Tran ; Wei Bao ; Albert Zomaya ; Minh N. H. Nguyen ; Choong Seon Hong, “Federated Learning over Wireless Networks: Optimization Model Design and Analysis”, In proc. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
[35]
Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. “EIE: efficient inference engine on compressed deep neural network”, In 43rd International Symposium on Computer Architecture, IEEE Press, 243–254.
[36]
V. Sze, “Efficient Computing for Deep Learning, AI and Robotics,” Dept EECS, MIT, Available online at https://lexfridman.com/files/slides/2020_01_15_vivienne_sze_efficient_computing.pdf
[37]
V. Sze, Y. Chen, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey” Proc. of IEEE, 2017, Available online at: https://www.semanticscholar.org/paper/Efficient-Processing-of-Deep-Neural-Networks%3A-A-and-Sze-Chen/3f116042f50a499ab794bcc1255915bee507413c
[38]
Stanford University, CS231n – Lecture 5-7: CNN, Training NNs, Available at YouTube.com

[39]
S. Han, J. Pool, J. Tran, and W, J. Dally, "Learning both weights and connections for efficient neural networks", NIPS, May 2015
[40]
P. A. Merolla, et al., “A million spikingneuron integrated circuit with a scalable communication network and interface”,Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[41]
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12 pp. 2493–2537, Aug. 2011.
[42]
T. N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolutionalneural networks for LVCSR”, in Proc. ICASSP, 2013, pp. 8614–8618.
[43]
L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey”, J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285, Jan. 1996.
[44]
3 AI Trends for Enterprise Computing. [Online]. Available: https://www.gartner.com/smarterwithgartner/3-ai-trends-for-enterprise-computing/
[45]
Shiming Ge ; Zhao Luo ; Shengwei Zhao ; Xin Jin ; Xiao-Yu Zhang, “Compressing deep neural networks for efficient visual inference”, In proc. 2017 IEEE International Conference on Multimedia and Expo (ICME)
[46]
3GPP TS 22.186, Enhancement of 3GPP support for V2X scenarios; Stage 1 (Release 16) v16.2.0
[47]
“Develop Smaller Speech Recognition Models with NVIDIA’s NeMo Framework”, https://developer.nvidia.com/blog/develop-smaller-speech-recognition-models-with-nvidias-nemo-framework/
[48]
3GPP TS 23.501, System architecture for the 5G System (5GS)

[49]
3GPP TS 23.502, Procedures for the 5G System (5GS)
******** Start of Change *********
[50]
Mingzhe Chen, "A Joint Learning and Communications Framework for Federated Learning over Wireless Networks", Oct 2020
******** End of Change *********
7.2
Compressed Federated Learning for image/video processing
7.2.1
Description

Federated learning can be used to train AI/ML models based on number of images and videos generated by cameras in mobiles devices by iteratively exchanging gradient of updating models instead of direct user images and videos. Because this method can utilize images and videos from many users, the performance of a trained AI/ML model can be significantly higher than a stand-alone case. However, the basic federated learning methods can have disadvantages by massive uplink traffics and high computational cost at a mobile device. Therefore, it is beneficial to consider a compressed federated learning (CFL) method, which allows compressed (not full) models to be transferred during a learning period.

Figure 7.2.1-1 shows the essential procedure of CFL. CFL iteratively performs a set of the three operation stages. In order to describe the iterations in CFL, we introduce a cycle of I: each cycle begins with the 1st iteration and ends with I-th iteration, which is immediately followed by the 1st iteration of the next cycle (e.g., (I+1)st iteration). For each iteration, the three operation stages include the training UE selection, the sparse weight distribution, and the training result reporting stages. The operations of these three stages in the first iteration and the operation in the last iteration are different from the operations in the other iterations.

Each iteration in CFL starts with the training UE selection stage, at which the CFL server selects a set of available users from the candidate users to associate with the same purpose AI/ML model. To the selected users, ready to participate in the learning process because of being an available state, the CFL server transmits the train configuration information. At the next stage, the CFL server sends the sparse global model, which could be an initial version of the AI/ML model in the first iteration. Otherwise, the sparse global model is an aggregated version based on user reporting information.

Then, each UE trains a received model after expanding the spatial model and reports an intermediate training result to the CFL server, where the training result is comprised only of significant value weight gradients for applying a model compression. By doing so, uplink throughout requirement can be significantly reduced in comparison with the basic federated learning method without compression. In the last iteration, I-th iteration, the CFL Server sends ‘train stop message’ to UEs so that the UEs can stop sending its update any longer, and the CFL Server performs fine-tuning by pruning unnecessary nodes. Throughout these multiple iterations of a cycle (i.e., from the 1st iteration through the I-th iteration) as in the figure, the AI/ML model will be progressively enhanced based on user data in mobile networks at reduced requirements of uplink and downlink throughput.

[image: image1.png]Global Initial Sparse Training result Sparse weight Training result
Training UE selection el et Teporting Training UE selection e Teponting
Compressed
| saetien Federated { secion
aggregation Sparse weight
multicast

‘Sparse Model
multicast

UE
report

UE
report

Training result report

diff(wy)

Training resut report

diff(wi)

UE1

€\ sphrse to Dense Training

UE2 arse to Dense Training Sharse to Dense Training

UE3

parse to Dense Training -

UE4 Sparse to Dense Training Sparse to Dense Training

Y v

1+th Compressed Federated Learning iteration 2-th Compressed Federated Leaming iteration

[image: image2.png]Sparse weight Training result
multicast reporting

Sparse weight

Training UE selection multicast

Training UE selection

[pevice
selection

Training result reporting

BS pruning Step

Compressed
Federated

aggregation

Sparse weight |

Sparse weight
P ticast multicast

multicast

Training resut report Training result repd

diff(wi) resource diff(wi)

report

UE1 E\sphrse to Dense Training \sphrse to Dense Training
UE2 Sharse to Dense Training Sparse to Dense Training
=
UE3
N
UE4 Sparse to Dense Training Sparse to Dense Training

Y Y
(1-1)+th Compressed Federated Learning iteration T-th Compressed Federated Learning iteration

[image: image3.png]New Global Sparse Training result
Training UE selection Model-info multicast reporting
Compressed
o S R—— Federated f---mmnmmmmmm oo
selction
\ agregation

R Sparse
Model-nfo

diff(wi)

UE1

ve2 [t Sharse to Dense Training 1.
L =5 T e e
UE4 parse to Dense Training

(1 1)-th Compressed Federated Learning iteration

Figure 7.2.1-1. Compressed Federated Learning timeline for image recognition
7.2.2
Pre-conditions
UE can have a computational hardware and algorithm capability to train an AI/ML model such as for an image and video cognition.

UE can send intermediate training results to a CFL server.

A CFL server can select training devices and determine training configuration.

A CFL server can aggregate intermediate training results and generate a sparse global model for the next learning iteration.

A CFL server can distribute a global AI/ML mode to a set of selected users.

7.2.3
Service Flows
Step 1: The CFL server selects the training users from candidate users.

Step 2: The CFL server sends the configuration information to the selected users.

Step 3: The CFL server distributes the initial (or, aggregated) sparse global model to the selected users through a 5G networks.

Step 4: Each UE expands the sparse global model and train the expanded model using its local data. Then, each UE sends only significant value weight gradients to the CFL server.

Step 5: The CFL server aggregates the training results received from the training UEs and update a global model using the aggregated results.

Step 6: Until the AI/ML model reaches saturated performance enhancement, the process runs repeatedly from step 1.

Step 7: Otherwise, the CFL server performs fine-tuning for a global model compression for a global model. This process can be applied regularly so as to improve bandwidth and computation resource efficiency before the training finalization.

Finally, the CFL server distributes the new sparse global model to all users which needs the same AI/ML model.

7.2.4
Post-conditions
For a UE prospective, CFL can reduce uplink and downlink throughput requirements for the federated learning process. Also, the computational complexity in UEs can be significantly reduced because of enabling a compressed model.

******** Start of Change *********
7.2.5
Existing features partly or fully covering the use case functionality
FFS.
7.2.6
Potential New Requirements needed to support the use case

Latency analysis for gradient uploading and the global model downloading for image recognition

AI/ML model training data for CFL is a new type of traffic. Consider CFL to train an 8-bit CNN VGG16 model with 224x224x3 images. Table 7.2.6-1 shows that the single GPU computation time should be larger than the addition of gradient uploading latency and global model downloading latency.

Table 7.2.6-1: GPU computation time for different mini-batch sizes
for Compressed Federated Learning
	Mini-batch size

(images)
	GPU computation time (ms)
	Required latency for trained gradient uploading (ms) (see note 1)
	Required latency for global model distribution (ms) (see note 1)

	64
	325
	<162.5ms
	<162.5ms

	32
	191
	<95.5ms
	<95.5ms

	16
	131
	<65.5ms
	<65.5ms

	8
	111
	<55.5ms
	<55.5ms

	4
	105
	<52.5ms
	<52.5ms

	NOTE 1:
Latency in this table is assumed 1 times the device GPU computation time for the given mini-batch size.

Data rate analysis for gradient uploading and the global model downloading for image recognition

Table 7.2.6-2 shows the required data rate for gradient uploading and global model downloading for the above 8-bit VGG16 model when CFL is applied. We calculated the required data rate based on table 1 in [39], in which the pruning size of the 8-bit VGG16 model can be reduced 13 times from the original size of 138 Mbyte. It is noteworthy that 13 times model compression gives almost no accuracy degradation for the 8-bit VGG16 model. If we assume that the minibatch size is 4, the uplink required rate is compressed trained parameter size * 8 / (GPU computation time / 2) = (138 / 13) Mbyte * 8 bits / (105ms / 2) = 1.62Gbps which is same to the downlink require rate. For 7 UE cases, the total uplink required data can be 1.62Gbps * 7 = 11.32Gbps, which is higher than the NR UL peak data rate (10Gbps). However, we remind that it could be 143Gbps for federated learning. Therefore, a model compression approach, such as CFL should be considered for the federated learning process.

Table 7.2.6-2: User experienced data rate for gradient uploading and global model downloading
User experienced data rate = compressed trained parameter size * 8 / (GPU computation time / 2)
	Mini-batch size

(images)
	User experienced UL data rate for trained gradient uploading (Gbps) (see note 2)
	User experienced DL data rate for global model distribution (Gbps) (see note 2)

	64
	0.52
	0.52

	32
	0.89
	0.89

	16
	1.30
	1.29

	8
	1.53
	1.52

	4
	1.62
	1.62

	NOTE 2:
Values provided in the table are calculative needs for an 8-bit VGG16 BN compressed model with 10.61MByte size, given mini-batch sizes per iteration.

In the case of 8-bit CNN VGG16, CFL compared to FL can transmit up to 13 times through model compression, so when using the same payload as FL, up to 13 times more users can be simultaneously supported. For example, as shown in Figure 7.2.6-1 in [50], the accuracy performance of the FL with 15 participants, which is five times the FL with 3 participants, can be increased by 6.5%. If we consider the maximum compression efficiency of CFL and support 13 times more users, more performance gains are expected.
Figure 7.2.6-1: Federated Learning accuracy as the total number of users [50]
[image: image4.png]0.91

0.9

0.89

0.88

Accuracy
o
x
4

0.86

0.85

0.84

0.83

9 12
Total number of users

15

18

For the flexibility and accuracy of FL, the compression rate of CFL can be adjusted according to the user's channel conditions. For example, even in the case of a user with a bad channel, the problem of not participating in FL can be solved by increasing the compression ratio of the model.

7.2.6.1
Potential KPI Requirements
[P.R.7.2.6.1-001] The 5G system shall support to upload a trained gradient for each iteration of Compressed Federated Learning with a maximum latency of 52.5~162.5ms.

[P.R.7.2.6.1-002] The 5G system shall support downloading the global model for each iteration of Compressed Federated Learning with a maximum latency of 52.5~162.5ms.
[P.R.7.2.6.1-003] The 5G system shall support UL unicast transmission with 0.52-1.62Gbps user experienced UL data rates for reporting the trained gradients for Compressed Federated Learning.

[P.R.7.2.6.1-004] The 5G system shall support DL multicast transmission with 0.52-1.62Gbps user experienced DL data rates for distributing the global model for Compressed Federated Learning.
******** End of Change *********

3GPP

