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5.2.5
Existing features partly or fully covering the use case functionality

None
5.2.6
Potential New Requirements needed to support the use case



The potential KPI requirements to support the use case are as given in Table 5.2.6.1-1:
- uplink streaming latency not higher than [100-200ms] and a user experienced UL data rate of [100-1500] kbps;

- downlink streaming latency not higher than [100-500ms] and a user experienced DL data rate of [32-150] Mbps;
Table 5.2.6.1-1: Recognition: latency breakdown and user experienced UL/DL data rates
	Recognition Task
	Latency: maximum

(see note 4)
	User experienced DLdata rate
	User experienced UL data rate

	
	
	Faster R-CNN [xx]
(see note 1)
	YOLOv3 [yy]
(see note 2)
	Faster R-CNN
	YOLOv3

	Uplink Streaming
	100-200ms
	
	
	100-1000 kbps
	200-1500 kbps

	Generic FPN Inference
	100-500ms
	FPN:

4-10fps
Sum(Pi)~1MB/frame
32-100Mbps uncompressed 

(see note 3)

Compression factor 10~100
	Multiple scale (similar to FPN):

1.5 MB feature map/frame

40-150 Mbps uncompressed

Compression factor 10~100
	
	

	Object Classification
	20-50ms
	Performed on UE
	Performed on UE
	
	

	Bounding Box Detection
	20-50ms
	Performed on UE
	Performed on UE
	
	

	Object Tracking
	50-150ms
	Performed on UE
	Performed on UE
	
	

	Enhanced Information Retrieval
	
	Few kBytes per request
	Few kBytes per request

	Overlay Rendering
	10ms
	Performed on UE
	Performed on UE

	Note 1: Faster R-CNN uses an input image size of 3x224x224. The video is downscaled on the UE to that target resolution and then compressed (e.g. using HEVC) and streamed to the edge for further processing. 

Note 2: YOLOv3 uses an input image size of 3x416x416. The captured video is downscaled on the UE to the target resolution and compressed prior to streaming to the edge.

Note 3: Faster R-CNN uses an FPN with ResNet 101 as backbone; thus resulting in feature maps {P2=(256x56x56), P3=(256x28x2), P4=(256x14x14), P5=(256x7x7)}.

Note 4: the latency estimates assume an overall latency of around 1s from a user pointing at an object until overlay information is displayed to the user.


