Page 1

3GPP TSG-SA5 Meeting #150

 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-236105
Goteborg, Sweden, 21st Aug 2023 - 25th Aug 2023
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0112
	rev
	1
	Current version:
	17.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-17 CR 32.158 Clarify an empty result set produced by scoping and filtering is not an error

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	2023-08-10

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	When scoping and filtering identifies no object to be returned, this should not be considered as an error. It is a successful request where no content is returned in the response.

	
	

	Summary of change:
	It is clarified that no response body (no content) should be returned if scoping and filtering identifies no object. The reust is successful, though.

	
	

	Consequences if not approved:
	An error response would be returned when scoping and filtering identifies no object.

	
	

	Clauses affected:
	4.4.2, 6.1.4, A.2.2, A.2.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

4.4.2
URI structure for resources representing managed object instances
URIs identifying resources representing managed object instances shall follow, when being used as a target URI in HTTP requests, the structure given by

{scheme}://{URI-DN-prefix}/{root}/{MnSName}/{MnSVersion}/{URI-LDN}

with:

{scheme}

Scheme component "http" or "https"

{URI-DN-prefix}

Authority component (host identifier and optional TCP port), the host name is constructed from the DN prefix as defined in clause 4.2.3.

{root}

Part of the path component, allows specifying one or more optional path segments for structuring the resource hierarchy on a HTTP server. The DN or parts thereof shall not be mapped to this path component.
{MnSName}

Part of the path component, allows specifying an optional MnS name in a single path segment.

{MnSVersion}

Part of the path component, allows specifying an optional MnS version in a single path segment.

{URI-LDN}

Part of the path component, constructed from the LDN as defined in clause 4.2.3, containing zero, one or more path segments.

As seen above, to construct the URI from a DN, it is necessary to map the "DNPrefixPlusRDNSeparator" as defined in clause 7.3 of TS 32.300 [3], the “LocalDN” as defined in clause 7.3 of TS 32.300 [3], and to add the additional optional path segments "/{root}/{MnSName}/{MnSVersion}".

To allow for a predictive mapping from an URI to the original DN it is necessary to specify "/{MnSName}/{MnSVersion}" in such a way that the beginning of the "LocalDN" can be unambigously identified.
Note it may be required when specifying a MnS to clearly identify the last RDN of "{URI-LDN}" and to use the following instead of "{URI-LDN}"

{URI-LDN-first-part}/{RDN}

or

{URI-LDN-first-part}/{className}={id}.
For the sake of brevity, "MnSRoot" is introduced that includes the "{scheme}" part, the colon (":"), the two slash characters ("//"), the "{authority}" part, a single slash character ("/") and the "{root}" part.
{MnSRoot} := {scheme}://{URI-DN-prefix}/{root}
When using "{MnSRoot}" the abbreviated URI structure is given by

{MnSRoot}/{MnSName}/{MnSVersion}/{URI-LDN}

or

{MnSRoot}/{MnSName}/{MnSVersion}/{URI-LDN-first-part}/{className}={id}

It is recommended to use this abbreviated form of the URI structure when defining Management Services.
The path segment "MnSVersion" allows access to resources with different MnS versions, for example:

http://operatorA.com/ProvMnS/v1500/SubNetwork=south/.../Cell=1

http://operatorA.com/ProvMnS/v1600/SubNetwork=south/.../Cell=1
Note that both URIs, though different as to the path segment indicating the version number of the ProvMnS, identify the same resource that is identified by the canonical URI:

http://operatorA.com/SubNetwork=south/.../Cell=1

and whose DN is:

DC=operatorA.com,SubNetwork=south,...,Cell=1

The optional path component "/{root}" may be used to separate the name space for 3GPP management from the name space for other domains:

http://operatorA.com/3gppManagement/ProvMnS/v1600/SubNetwork=south/.../Cell=1

or to provide dedicated URIs on the same host for different tasks:

http://operatorA.com/3gppManagement/cm/ProvMnS/v1600/SubNetwork=south/.../Cell=1

http://operatorA.com/3gppManagement/fm/ProvMnS/v1600/SubNetwork=south/.../Cell=1
Note that when different hosts are used for different management tasks, like in

http://cm.operatorA.com/3gppManagement/ProvMnS/v1600/SubNetwork=south/.../Cell=1

http://fm.operatorA.com/3gppManagement/ProvMnS/v1600/SubNetwork=south/.../Cell=1
then also the resources are different and identifierd by the canonical URIs
http://cm.operatorA.com/SubNetwork=south/.../Cell=1

http://fm.operatorA.com/SubNetwork=south/.../Cell=1
or the DNs

DC=cm.operatorA.com,SubNetwork=south,...,Cell=1

DC=fm.operatorA.com,SubNetwork=south,...,Cell=1

In the example above, it is assumed that both resources represent the same cell in the network. This information cannot be derived from the DN or canonical URI, though.
	Next modification

6.1.4
Construction rules for the response message body

When multiple resources are selected for retrieval by HTTP GET, the response message body with the selected resource set shall be constructed according to one of the following rules.

Flat response construction method: The resources are returned as a flat list of JSON objects. Their location in the hierarchical containment tree shall be specified by, e.g. , their URI or Distinguished Name (DN) which needs to be returned for each resource. The object class name of each resource should be returned as well.
Hierarchical response construction method: The resources are returned inside the containment tree as specified by the JSON schema definition of the information model. For the resources that are not selected, the following applies:

-
A resource is not returned at all if it is not an ancestor of any of the selected resources.

-
A resource is returned empty, except for the resource identifiers, if it is a descendant of the base resource and an ancestor of any of the selected resources

The containment tree present in the response message shall always start with the base resource.
If no resource is identified in the retrieval request the MnS Producer shall return a "204 No Content" response.
The following media types shall be used to distinguish the flat and the hierarchical response representation:

-
application/vnd.3gpp.object-tree-flat+json,
-
application/vnd.3gpp.object-tree-hierarchical+json.
The "application/json" media type may be used alternatively and defaults to the hierarchical representation format.

The MnS Consumer shall indicate the acceptable representations in the "Accept" header, as described in clause 4.3.2. One or multiple media types may be specified. If the MnS Producer cannot provide an acceptable representation, a "406 Not Acceptable" error response shall be returned. The MnS Consumer may send a second request with another media type specified in the "Accept" header.
	Next modification

A.2.2
Attribute and attribute field selection on a single resource

To retrieve only the "userLabel" attribute and the "mnc" attribute field of the "plmnId" attribute of the "SubNetwork", the MnS Consumer might send:
	GET /SubNetwork=SN1?attributes=userLabel&fields=/attributes/plmnId/mcc HTTP/1.1
Host: example.org

Accept: application/json

Alternatively one might send as well

	GET /SubNetwork=SN1?fields=/attributes/userLabel,/attributes/plmnId/mcc HTTP/1.1
Host: example.org

Accept: application/json

The response contains only the selected attribute "userLabel" and the selected attribute field "mnc":
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "plmnId": {

 "mnc": 789

 }

 }

}

In the next example, the MnS Consumer retrieves the "userLabel" and "vendorName" of the "ManagedElement" whose "id" is equal to "ME1":

	GET /SubNetwork=SN1/ManagedElement=ME1?attributes=userLabel,vendorName HTTP/1.1

Host: example.org

Accept: application/json

The MnS Producer responds as follows:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY"

 }

}

The following request selects all attributes:

	GET /SubNetwork=SN1/ManagedElement=ME1?fields=/attributes HTTP/1.1

Host: example.org

Accept: application/json

It is thus identical to:

	GET /SubNetwork=SN1/ManagedElement=ME1 HTTP/1.1

Host: example.org

Accept: application/json

Both requests return the complete resource representation with all attributes:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

}

The following request returns the first item of the "perfMetrics" attribute, which is of type array:

	GET /SubNetwork=SN1/ManagedElement=ME1/PerfMetricJob=PMJ1?fields=attributes/perfMetrics/0 HTTP/1.1

Host: example.org

Accept: application/json

Note indices start with "0" in JSON Pointer. The response looks like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "PMJ1",

 "attributes": {

 "perfMetrics": [

 "Metric1"

]

 }

}

	Next modification

A.2.3
Retrieval of multiple complete resources using scoping and filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The base object and all objects at scope level "1", irrespective of their object class, are included in the response. The acceptable response media type specified by the "Accept" header field is "application/json", which indicates to the MnS producer to use the hierarchical response construction method
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

The MnS Consumer can request also to return a response constructed according to the flat response construction method. In this case the "Accept" header contains the "application/vnd.3gpp.object-tree-flat+json" media type.

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/vnd.3gpp.object-tree-flat+json

The response looks like:
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.object-tree-flat+json
[

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "DC=example.org,SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 },

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 },

 {

 "id": "PMJ1",

 "objectClass": "PerfMetricJob",

 "objectInstance": "DC=example.org,SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 },

 {

 "id": "TM1",

 "objectClass": "ThresholdMonitor",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

The "objectInstance" of each returned object is present in the response, as required in clause 6.1.4.
When only objects at scope level "1" are requested to be returned, the request looks like:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1

Host: example.org

Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the two "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide the containment nodes for the "XyzFunction" objects.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only the two "XyzFunction" objects without containment nodes.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

The following example selects all objects of any class on scope level "1" that have a "location" attribute whose value is equal to "Grunewald":

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=1&\

 filter=/*/*[attributes[location="Grunewald"]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "ManagedElement" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

]

}

The input document to the XPath expression is a document whose root node is the object identified by the path component of the target URI and that includes the object representations of the scoped objects. In this example the root node is the "SubNetwork", but it is not scoped and hence included in the input document with its "id" only, i.e. without the "attributes" node. The input document includes furthermore all scoped objects on level "1" with their complete representations (without name-contained objects). These are the two "ManagedElement" objects, the "PerfMetricJob" object, and the "ThresholdMonitor" object.
	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted to a XML document Note that a valid XML document has one and only one root element. For that reason the "SubNetwork" element needs to be added as root element..
	<SubNetwork>

 <id>SN1</id>

 <ManagedElement>

 <id>ME1</id>

 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

	<ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=2&\

 filter=/*/*/*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "XyzFunction" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

An identical response is returned when using the following requests:

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL&\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_SUBTREE&scopeLevel=2&\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL&\

 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

It is possible to combine scoping and filtering with attribute and attribute field selection. The following example returns the containment tree, starting with the "SubNetwork" identified by the target URI.
	GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org

Accept: application/json

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

}

The next example scopes the same subtree as in the previous example and requests to return only "vendorName" attributes instead of no attributes at all.

	GET /ProvMnS/v1700?\

 scopeType=BASE_ALL&\

 attributes=vendorName HTTP/1.1

Host: example.org

Accept: application/json

This results, according to clause 6.2.3, in removing from the response all scoped resources that do not have a "vendorName" attribute.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "vendorName": "Company XY"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "vendorName": "Company XY"

 }

 }

]

}

If the retrieval request identifies resources that do not exist, such as in

	GET /ProvMnS/v1700?scopeType=BASE_NTH_LEVEL&scopeLevel=3 HTTP/1.1

Host: example.org

Accept: application/json

the MnS producer returns a "204 No Content" response.
	HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

When the MnS Consumer does not know the root objects of the containment tree and wants to retrieve the complete trees starting with the roots, the target URI needs to identify the NRM root, i.e. the resource above the root objects. According to clause 4.4.2, this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example "/ProvMnS/v1700". In the following example, the "attributes" query parameter is empty and only the name-containment hierarchy (without attributes) is returned.
	GET /ProvMnS/v1700?scopeType=BASE_ALL&attributes= HTTP/1.1

Host: example.org

Accept: application/json

The response is illustrated below.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "SubNetwork": [
 {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

 }

]

}

Multiple root resources can be returned as well. For example, assume a NRM with three "SubNetwork" root resources, then the response may look like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{
 "SubNetwork": [

 {

 "id": "SN1",

 ...
 },

 {

 "id": "SN2",

 ...
 },

 {

 "id": "SN3",

 ...
 }

]

}

Note that when the target URI identifies the NRM root, then the name of the document (root) element, to which an XPath expression is applied, is "nrmRoot". The first step of the location path of an XPath expression is hence "/nrmRoot". For example, the following HTTP GET request returns the "SubNetwork" with the identifier "SN1".

	GET /ProvMnS/v1700?\

 scopeType=BASE_ALL&\

 filter=/nrmRoot/SubNetwork[id="SN1"]/attributes HTTP/1.1

Host: example.org

Accept: application/json

Note the presence of the location step "/attributes". This step is necessary to select only the "attributes" container and hence only the SubNetwork" with the identifier "SN1" without any name-contained objercts.

	{

 "SubNetwork": [

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "DC=example.org,SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 }

]

}

Without the location step "/attributes" the complete subtree would be returned.

	End of modifications

