
[bookmark: _Toc26528660][bookmark: _Toc26265178][bookmark: _Toc26525055][bookmark: _Toc27898151][bookmark: _Toc26528663][bookmark: _Toc17295212][bookmark: _Toc27898154][bookmark: _Toc26525058][bookmark: _Toc26265181]SA WG99 Meeting #148e	SP-230121
21– 24 March 2023, e-Meeting	

Source:	Xidian University (Guangdong Communications and Networks Institude)
Title:	Discussion of Open-Source-Defined Edge AI
Document for:	Discussion / Approval
Agenda Item:	1.5
Work Item / Release:	
Abstract of the contribution: Discusses the architecture and the principles of open-source-defined edge AI, include the native AI decoupling and reconfiguration of the AI functions and multi-dimensional resources.
1. Introduction
O-RAN has adopted artificial intelligence (AI) as one of the key technologies to open up the 5G network capabilities. Nevertheless, the AI enhancement of O-RAN has focused on the open-source-defined RAN, e.g., RAN Intelligent Controller (RIC), while open-source multi-access edge computing (MEC) has not been sufficiently studied by O-RAN. Open-source MEC (OpenMEC) was realized by decoupling MEC functions and resources and then recomposing the disaggregated MEC functions and resources into customized OpenMEC instances on demand, but AI was not embedded in the design of OpenMEC. As a remedy, the above problem may be met by a new paradigm of Open-Source-Defined Edge AI (OpenEAI).
	[bookmark: _GoBack]SP-230121

	Mobile Internet traffic continues increasing driven by the fast development of the Internet of Things (IoT) and various mobile applications required by vertical industry. However, conventional network architecture, which is built upon special hardware and software, may fail to keep up with the rapidly evolving deployment scenarios, service requirements and technologies. This brings an opportunity for open-source-defined cellular network that enables operators to adaptively and efficiently customize their networks to users’ preference.
The O-RAN alliance promotes the development of open-source-defined cellular networks and MEC that build on virtualized network elements, white-box hardware and standardized interfaces and identifies flexibility and customization as the two basic requirements of open-source-defined wireless networking.
Open-source-defined cellular networks are built on the integration of 5G/B5G technologies, such as network function virtualization (NFV), software-defined networking (SDN), multi-access edge computing (MEC), etc. Among these technologies, open-source MEC serves as the core driver for cell-edge performance enhancement, and enables customized radio access networks (RANs) for IoT, Ultra Reliable Low Latency Communications (URLLC), etc.
Benefits of MEC:
· MEC can use the radio access network to provide the services and cloud computing functions required by telecom users in the vicinity, creating a carrier-class service environment with high performance, low latency and high bandwidth.
· MEC can improve user experience and save bandwidth resources.
· MEC can provide third-party application integration by sinking computing power to mobile edge nodes, providing unlimited possibilities for service innovation at mobile edge entrances.

2. Support of OpenEAI Framework
[bookmark: _Toc510607461]Proposal 1	To enable self-organization, automated operations, and CapEx/OpEx savings, the focus is on promoting open source-defined edge AI, especially native AI, which is based on network decoupling and reconfiguration.
[image: IMG_256]
Fig. 1: Open-Source-Defined edge AI.
The OpenEAI framework conceived is shown in Fig. 1. Which is constituted by four layers and three planes (4L3P), i.e., the infrastructure, virtualization, function, and application layer at the horizontal, and the control, management and orchestration, and AI plane at the vertical.
The infrastructure layer is at the lowest level, covering all computing, caching and communication resources of the sys-tem. Specifically, the CPU can provide high-density computing power for edge AI. Memory and hard disk drive (HDD)/solid state drive (SSD) are the main components of caching resource. Communication resource comprises the bandwidth as well as evolved nodeB (eNB), gNB or access point (AP).
At the virtualization layer, based on the NFV technology, the underlying three-dimensional resources could be decoupled from the dedicated hardware and abstracted into a resource pool that could be shared by various function entities at the upper function layer, e.g., network function (NF) at the control plane and AI function (AIF) at the AI plane. Then, OpenEAI creates multiple Docker containers, which are run on the underlying resource pool and could simultaneously operate different functions for providing customized services.
The function layer, as the core layer of OpenEAI, includes unified service-based interface (SBI) and diverse functions, where SBI can connect these functions together based on the unified stateless hypertext transfer protocol (HTTP) to ensure that they can communicate directly with each other when needed. Furthermore, the previously centralized services are decoupled into independent network and AI functions. Firstly, the user plane function (UPF) could be sinked from 5GC to OpenEAI, in order to provide 5G new radio (NR) for Ope- nEAI. Secondly, to enhance OpenEAI, downloading several other NFs in the control plane of 5GC and develop several new AIFs. These NFs and AIFs are transparent with each other and can also be combined at will, so that they could be activated and released by all users instantly for customized services.
Actually, a user does not consider the details of OpenEAI, and he/she will use various APPs at the application layer to get the customized services, and the APPs will do all the other things automatically for him/her, e.g., calling NFs and AIFs at the function layer and Dockers at the virtualization layer. For simplicity, only traffic identification and multidimensional resource allocation are considered for two apps, to process caching and computing requests.
The control plane stems from software-defined networking (SDN), which decouples the control signaling from the data transmission. It is mainly responsible for the specific data processing and transmission, involving the infrastructure layer, virtualization control layer, function control layer, and application control layer from bottom to top. Therein, the virtualization control layer abstracts the communication, caching and computing resources in the infrastructure layer into a virtual resource pool to provide resources for the NFs in the function control layer. The function control layer is comprised of a unified SBI and several MEC NFs. The MEC NFs include Communication Protocol Conversion Function (CPCF), Service Registry Function (SRF), Unified Data Management (UDM), NF Repository Function (NRF) and Application Selection Function (ASF). The application control layer contains the main MEC applications, such as enhanced Mobile Broadband (eMBB), URLLC and massive Machine Type Communications (mMTC) applications.
The MANO plane is composed of the virtualized infrastructure manager (VIM) and MANO, which completes the coordination and resource management of the OpenEAI system. The MANO plane is responsible for managing and orchestrating the NFs and APPs, and scheduling the VIM to allocate resources. As mentioned earlier, the MANO is in charge of MEC reconfiguration, where the OpenEAI’s template and instantiation scheme are proposed to implement the flexible reconfiguration as required. The VIM manages the virtualized resources according to MANO’s commands, so as to ensure that the appropriate computing, caching and communication resources are supplied for the upper layers.
As the core part of OpenEAI, the AI plane sinks the model training and real-time reasoning processes of the AI algorithm to the edge, which shortens the transmission path of massive training data and reduces the transmission delay. Same as the control plane, the AI plane involves four layers of OpenEAI, i.e., the infrastructure layer, virtualization AI layer, function AI layer and application AI layer. The application AI layer consists of the template selector (TS) and intelligent algorithm model base (IAMB). When receiving the service requests from the application control layer, the TS selects the algorithm model in the IAMB according to the type of application, and sends scheduling instructions to the function AI layer through NBI. The function AI layer draws from the idea of microservice and decouples the AI element into several AIFs as well as a SBI. The SBI connects the AIFs together and enables them to call or communicate with each other, and the AIFs include Data Collection Function (DCF), Data Preprocessing Function (DPF), Model Training Function (MTF), Model Validation Function (MVF) and Data Storage Function (DSF), which are scheduled by the NF’s MANO through EBI. The virtualization AI layer contains the diversified environment library, which selects the running environment according to the current resource status and the characteristics of the network applications to support users’ service requests.
3. Support of OpenEAI Decoupling
Proposal 2	With reference to the idea of microservice, by developing a function AI layer, AI entities are decomposed into several independent AIFs. This functional decoupling gives the OpenEAI system the advantages of high reliability, responsibility clarity and scalability.

Fig. 2: The design of the micro-service-based Function AI Layer
To decouple the AIFs, a function AI layer is defined as the key layer of the AI plane in the OpenEAI system, which contains several service-oriented AIFs and an SBI, therein, the AIFs exchange information with each other through the SBI as shown in Fig. 2. The introduction of the function AI layer realizes the deployment of AIFs at the edge of the network and reduces the service response delay obviously.
DCF is responsible for collecting the raw data as the training sets to obtain the better training model for AI algorithms. If all the collected data is valid and can be used directly, the data will be transmitted to the MTF for training, otherwise the data will be transmitted to the DPF for the pretreatment.
DPF pretreats the raw data if the collected data is mixed with the invalid or interference content, and the raw date will be processed into the form required for the training model. The process of pretreatment includes the data sampling, feature extraction and dimension reduction.
MTF is used for the AI model training, which contains the core training models of all the AI algorithms. After receiving the required model type, the MTF will select the corresponding AI algorithm to train the model to ensure that the service requests can be responded. If a new AI algorithm is added to the MTF, the related parameters will be stored in the DSF to facilitate the algorithm to be retrieved when receiving the service requests.
MVF is in charge of evaluating the performance of the AI algorithm model, which consists of two parts: the model validation during the model training (MVMT) stage and the model validation during the real-time reasoning (MVRR) stage. The MVMT validates the model training accuracy of the trained AI algorithm models, and the model training accuracy percentage is used to represented the effect of the model training. The real-time reasoning is implemented by the MVRR based on the AI algorithm models stored in the DSF, and then the validation results of the AI algorithms will be obtained.
DSF is a database to manage all the data in the AI plane centrally, which covers the related parameters of various AIFs in the OpenEAI system. Multiple arithmetic operations, such as addition, deletion, query and modification, etc., could also be implemented on the stored data by the DSF. Other AIFs would access the data in the DSF through the unified SBI, and the data could be updated according to the requirements of other AIFs.
The AIFs can be activated flexibly by the NF’s MANO according to the specific service requirements based on the unified HTTP, which is used as an EBI between the NF’s MANO and the function AI layer. The unified HTTP can also be used as a WBI between the function AI layer and function control layer at the vertical as well as NBI, NSBI and FSBI at the horizontal. In addition, the unified HTTP would be used as SBI in the function AI layer and function control layer.
4. Support of OpenEAI Reconfiguration
Proposal 3	The OpenEAI reconfiguration references the idea of template and instantiation, which aims to schedule the AIFs, runtime environment library and resources according to the types of applications to provide the customized intelligent services for users.

Fig. 3: The framework of the template and instantiation scheme
Template provides a universal solution for any certain type of problems by extracting and abstracting their commonalities. The template of a certain application contains the constituent elements of the service, including the NF, resource and runtime environment requirements. The AI service corresponding to a certain application can be used as an instance, which is created according to the template, and different instances can be created based on the templates to support various network service requirements.
The design of the template and instantiation scheme for the OpenEAI system is shown in Fig. 3. The Kubernetes contains one master node and several worker nodes, where the former is responsible for the overall management of the template and instantiation scheme, and the later are used for deploying the AIFs of the OpenEAI system. The maser node contains four basic components, i.e., Application Program Interface (API) Server, Controller-manager, Scheduler and Etcd, while the worker nodes consist of kubelet and kube-proxy.
The predefinition of template in the OpenEAI system includes the definitions of the parameters for the NF selection, resource allocation and runtime environment configuration according to the requirement of the specific application. For example, the details of the two templates are shown in Fig. 4.

Fig. 4: OpenEAI Template
The OpenEAI template consists of three layers, i.e., Network Function Management Layer (NFML), Parameter Definition Layer (PDL) and Service Implement Layer (SIL).Therein, the NFML is responsible for the status monitoringand template selection. Specifically, the template requirementstatus are monitored by the MANO and then the corresponding templates will be selected by the TS according to the templaterequirements. The PDL covers all the parameters of the Ope-nEAI templates, and the parameters are stored in the general data table (GDT) in the TS and the special data table (SDT) in the IAMB. The SIL responds to the application requests and updates the template parameters.
The template of OpenEAI contains the general part and specialized part for each application. Therein, the general part is responsible for the NF activations and the template fundamental parameter configurations. The special part for each template guarantees that the particular role of each application in the OpenEAI system can be given full play to, which is closely related to each specific application.
Instantiation is a process to respond to the service requests. Since an instance is created according to its corresponding template, it is principal to check whether the corresponding template exists when receiving an instantiation request. If the corresponding template does not exist, the template will be created firstly, then the instance will be created according to the parameters in the template. When an instance comes to the end and will not be required again, its resources will be recovered to realize the full utilization of resources.
The workflow of OpenEAI is summarized as follows, as shown in Fig. 5.

Fig. 5: OpenEAI Workflow
Firstly, the MANO plane monitors the application layer continuously, and sends the template selection request to the TS when receiving a service request. Then, the TS selects the template corresponding to the application type, and sends the template predefinition parameters to the IAMB to request the instantiation information of the template. Next, the IAMB extracts all the information required for the instantiation according to the template predefinition parameters and then feeds them back to the TS, and then the TS sends the received instantiation information to the MANO plane. Finally, the instantiation will be implemented by the MANO based on the parameters in the template.
The instantiation process has three steps. Firstly, the runtime environment and operating system of the AIFs are configured according to the parameters obtained from the IAMB. Then, the required communication, storage and computing resources are allocated according to the resource predefinition in the template to guarantee the service quality of the instance. Finally, the related AIFs are activated.
5. Conclusions
[bookmark: _Hlk51968268]The following proposals have been made.
Proposal 1	To enable self-organization, automated operations, and CapEx/OpEx savings, the focus is on promoting open source-defined edge AI, especially native AI, which is based on network decoupling and reconfiguration.
Proposal 2	With reference to the idea of microservice, by developing a function AI layer, AI entities are decomposed into several independent AIFs. This functional decoupling gives the OpenEAI system the advantages of high reliability, responsibility clarity and scalability.
Proposal 3	The OpenEAI reconfiguration references the idea of template and instantiation, which aims to schedule the AIFs, runtime environment library and resources according to the types of applications to provide the customized intelligent services for users.
6. References
[1]	S2-2202169: “New Solution on 5GS Monitoring Capabilities for AI/ML-based Services”, LS from SA2#150e.
[2]	S2-2202615: “Support Application AI/ML Traffic Transport”, LS from SA2#150e.
[3]	S2-2202675: “QoS and Policy enhancement for AI/ML service”, LS from SA2#150e.
[4]	S2-2200038: “Reply LS from GSMA Operator Platform API Group to 3GPP SA, SA2, SA5, SA6 and ETSI ISG MEC on edge computing definition and integration” LS from SA2#149e.
[5]	S2-2203654: “Reply LS to ETSI MEC on MEC Federation and interest to collaborate” LS from SA2#151e.
[6]	S2-2209214: “Study on 5G System Support for AI/ML-based Services” LS from SA2#153e.
[7]	S2-2208436: “New WID on System support for AI/ML-based Services” LS from SA2#153e.
3GPP

Microsoft_Visio___1.vsdx
MANO Plane
K8s Master Node

Scheduler
Controller
VIM
Control Plane
Virtual Infrastructure
APP
Layer
Resource Allocation
Traffic Identification
… …

Etcd
API Server
Kubernetes Worker Node1
Kubelet
Pod
CPCF

Pod
SRF
Pod
ASF
Pod
UDM
MEC Platform

AI Plane
AI Node

Template Predefinition &Template Selection
Runtime Environment Library
Kubelet

Pod
MTF
Pod
MVF

Pod
DSF
Pod
DCF
Pod
DPF
Tensor Flow
PyTorch
… …
Kubernetes Worker Node2
Kubelet
MEC Platform

Pod
NRF
Pod
CPCF

Pod
SRF
Pod
ASF
Pod
UDM
Pod
NRF

image3.emf
MANO PlaneK8s Master NodeSchedulerControllerVIMControl PlaneVirtual Infrastructure APPLayerResource AllocationTraffic IdentificationĂ Ă EtcdAPI ServerKubernetes Worker Node1KubeletPodCPCFPodSRFPodASFPodUDMMEC PlatformAI PlaneAI NodeTemplate Predefinition &Template SelectionRuntime Environment LibraryKubeletPodMTFPodMVFPodDSFPodDCFPodDPFTensor FlowPyTorchĂ Ă Kubernetes Worker Node2KubeletMEC PlatformPodNRFPodCPCFPodSRFPodASFPodUDMPodNRF

Microsoft_Visio___2.vsdx

Traffic Identification Template
Network Function Management Layer
Template Selection
Status Monitoring
Service info
IP:Port info
AIF info
AI Algorithm
Model Registration
Protocol Conversion
Data Packet Collection and Preprocession
Traffic Identification Model Training
Resource Allocation Model Training
Data Update
Resource Allocation Template
TI_template_bandwidth
Parameter Definition Layer
Service Implement Layer
TI_update_time
TI_template_memory
TI_template_cpu
TI_template_info
RA_template_bandwidth
RA_update_time
RA_template_memory
RA_template_cpu
RA_template_info
Raw Data Collection

image4.emf
Traffic Identification TemplateNetwork Function Management LayerTemplate SelectionStatus MonitoringService infoIP:Port info AIF info AI AlgorithmModel RegistrationProtocol ConversionData Packet Collection and PreprocessionTraffic Identification Model TrainingResource Allocation Model TrainingData UpdateResource Allocation TemplateTI_template_bandwidthParameter Definition LayerService Implement LayerTI_update_timeTI_template_memoryTI_template_cpuTI_template_infoRA_template_bandwidthRA_update_timeRA_template_memoryRA_template_cpuRA_template_infoRaw Data Collection

Microsoft_Visio___3.vsdx
Instantiation
Template Selection/Predefinition
Application Request
Template Selection
Parameter Return
MAMO
TS
IAMB
Template Configuration Information Acquisition
Template Request
Instance parameter Predefinition
Parameter Configuration
DSF Updating
Instantiation Request
Instantiation

Application
Application Layer
Container Running
Resource Parameter Configuration
Environment Parameter Configuration
AIF
DCF
MTF
MVF
DPF

image5.emf
InstantiationTemplate Selection/PredefinitionApplication RequestTemplate SelectionParameter ReturnMAMOTSIAMBTemplate Configuration Information AcquisitionTemplate RequestInstance parameter PredefinitionParameter ConfigurationDSF UpdatingInstantiation RequestInstantiationApplicationApplication LayerContainer RunningResource Parameter ConfigurationEnvironment Parameter ConfigurationAIFDCFMTFMVFDPF

image1.png

SBI
Resource
Allocation
Traffic
Identification
SBI
HTTP
DCF
Resource
Allocation
Traffic
Identification
MTF
Resource
Allocation
Traffic
Identification
MVF
Resource
Allocation
Traffic
Identification
DSF

SBI
Resource
Allocation
Traffic
Identification
SBI
DPF

image2.emf
SBIResourceAllocationTrafficIdentificationHTTPDCFResourceAllocationTrafficIdentificationMTFResourceAllocationTrafficIdentificationMVFResourceAllocationTrafficIdentificationDSFSBIResourceAllocationTrafficIdentificationDPF

