

	
3GPP TSG-SA5 Meeting #146	S5-226642
Toulouse, France, 14th Nov 2022 - 18th Nov 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	28.623
	CR
	0216
	rev
	-
	Current version:
	16.12.1
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Add missing attribute properties to YANG

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	TEI16
	
	Date:
	2022-11-04

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	Mapping of the isNotifyable property is missing from YANG. Mapping of
YANG SW needs to know, for which attributes it should send data change notifications. In the YANG ecosystem the stage 3 YANG models directly drive the SW. For this reason YANG models should contain information about isNotifyable.
The alternative would be to hard code this information in the SW which is a bad solution.
All properties of an attributes should be available in one place in the YANG model. It is an error that the isNotifyable property is not mapped.

	
	

	Summary of change:
	Add missing isNotifyable property to YANG as an extension statement

	
	

	Consequences if not approved:
	isNotifyable info missing from YANG solution set, the information needs to be hardcoded.

	
	

	Clauses affected:
	D.2.3, D.2.4, D.2.6a, D.2.7, D.2.9

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	X
	
	 O&M Specifications
	TS 32.160 CR 0030

	
	

	Other comments:
	Dependent on TS 32.160 CR 0030
Forge link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/462
Last commit: 290217b0

	
	

	This CR's revision history:
	

First change
[bookmark: _Toc27489930][bookmark: _Toc36033512][bookmark: _Toc36475774][bookmark: _Toc44581535][bookmark: _Toc51769151][bookmark: _Toc105591928]D.2.3	module _3gpp-common-managed-function.yang
<CODE BEGINS>
module _3gpp-common-managed-function {
 yang-version 1.1;
 namespace urn:3gpp:sa5:_3gpp-common-managed-function;
 prefix mf3gpp;

 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-measurements { prefix meas3gpp; }
 import _3gpp-common-trace { prefix trace3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";
 description "The module defines a base class/grouping for major 3GPP
 functions.";
 reference
 "3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)

 3GPP TS 28.620
 Umbrella Information Model (UIM)";

 revision 2022-11-03 { reference CR-0192; }
 revision 2021-01-25 { reference "CR-0122"; }
 revision 2020-09-30 { reference "CR-bbbb"; }
 revision 2020-08-06 { reference "CR-0102"; }
 revision 2020-08-03 { reference "CR-0095"; }
 revision 2020-06-23 { reference "CR-085"; }
 revision 2020-06-08 { reference "CR-0092"; }
 revision 2019-11-21 { reference "S5-197275, S5-197735"; }
 revision 2019-10-28 { reference S5-193518 ; }
 revision 2019-06-18 { reference "Initial revision"; }

 feature MeasurementsUnderManagedFunction {
 description "The MeasurementSubtree shall be contained under ManageElement";
 }

 feature TraceUnderManagedFunction {
 description "The TraceSubtree shall be contained under ManagedFunction";
 }

 grouping Operation {
 description "This data type represents an Operation.";
 reference "3gpp TS 28.622";

 leaf name {
 type string;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf-list allowedNFTypes {
 type string;
 min-elements 1;
 description "The type of the managed NF service instance
 The specifc values allowed are described in TS 23.501";
 }

 leaf operationSemantics {
 type enumeration {
 enum REQUEST_RESPONSE;
 enum SUBSCRIBE_NOTIFY;

 }
 config false;
 mandatory true;
 description "Semantics type of the operation.";
 reference "3GPP TS 23.502";
 }
 }

 grouping ManagedNFServiceGrp {
 description "A ManagedNFService represents a Network Function (NF) service.";
 reference "Clause 7 of 3GPP TS 23.501.";

 leaf userLabel {
 type string;
 description "A user-friendly (and user assignable) name of this object.";
 }

 leaf nFServiceType {
 config false;
 mandatory true;
 type string;
 description "The type of the managed NF service instance
 The specifc values allowed are described in clause 7.2 of TS 23.501";
 yext3gpp:notNotifyable;
 }

 list sAP {
 key "host port";
 min-elements 1;
 max-elements 1;
 description "The service access point of the managed NF service instance";
 uses types3gpp:SAP;
 }

 list operations {
 key name;
 min-elements 1;
 uses Operation ;
 description "Set of operations supported by the managed NF
 service instance";
 }

 leaf administrativeState {
 type types3gpp:AdministrativeState;
 mandatory true;
 description "Permission to use or prohibition against using the instance";
 }

 leaf operationalState {
 type types3gpp:OperationalState;
 config false;
 mandatory true;
 description "Describes whether the resource is installed and working";
 }

 leaf usageState {
 type types3gpp:usageState ;
 config false;
 mandatory true;
 description "Describes whether the resource is actively in use at a
 specific instant, and if so, whether or not it has spare
 capacity for additional users.";
 }

 leaf registrationState {
 type enumeration {
 enum REGISTERED;
 enum DEREGISTERED;
 }
 config false;
 }
 }

 grouping Function_Grp {
 description "A base grouping for 3GPP functions.";

 leaf userLabel {
 type string;
 description "A user-friendly (and user assignable) name of this object.";
 }
 }

 grouping ManagedFunctionGrp {
 description "Abstract root class to be inherited/reused by classes
 representing 3GPP functions.

 Anywhere this grouping is used by classes inheriting from ManagedFunction
 the list representing the inheriting class needs to include all
 contained classes of ManagedFunction too. Contained classes are
 either
 - augmented into the Function class or
 - shall be included in the list representing the inheriting class
 using the grouping ManagedFunctionContainedClasses:
 1) EP_RP solved using augment
 2) uses mf3gpp:ManagedFunctionContainedClasses;
 ";

 uses Function_Grp;

 list vnfParametersList {
 key vnfInstanceId;
 description "Contains the parameter set of the VNF
 instance(s) corresponding to an NE.
 The presence of this list indicates that the ManagedFunction
 represented is realized by one or more VNF instance(s). Otherwise it
 shall be absent.
 The presence of a vnfParametersList entry, whose vnfInstanceId with a
 string length of zero, in createMO operation can trigger the
 instantiation of the related VNF/VNFC instances.";

 leaf vnfInstanceId {
 type string ;
 description "VNF instance identifier";
 reference "ETSI GS NFV-IFA 008 v2.1.1:
 Network Functions Virtualisation (NFV); Management and Orchestration;
 Ve-Vnfm reference point - Interface and Information Model Specification
 section 9.4.2

 ETSI GS NFV-IFA 015 v2.1.2: Network Functions Virtualisation (NFV);
 Management and Orchestration; Report on NFV Information Model
 section B2.4.2.1.2.3";
 }

 leaf vnfdId {
 type string ;
 description "Identifier of the VNFD on which the VNF instance is based.
 The absence of the leaf or a string length of zero for vnfInstanceId
 means the VNF instance(s) does not exist (e.g. has not been
 instantiated yet, has already been terminated).";
 reference "ETSI GS NFV-IFA 008 v2.1.1:
 Network Functions Virtualisation (NFV); Management and Orchestration;
 Ve-Vnfm reference point - Interface and Information Model Specification
 section 9.4.2";
 }

 leaf flavourId {
 type string ;
 description "Identifier of the VNF Deployment Flavour applied to this
 VNF instance.";
 reference "ETSI GS NFV-IFA 008 v2.1.1:
 Network Functions Virtualisation (NFV) Management and Orchestration";
 }

 leaf autoScalable {
 type boolean ;
 mandatory true;
 description "Indicator of whether the auto-scaling of this
 VNF instance is enabled or disabled.";
 }
 }

 list peeParametersList {
 key idx;
 description "Contains the parameter set for the control
 and monitoring of power, energy and environmental parameters of
 ManagedFunction instance(s).";

 leaf idx { type uint32; }

 leaf siteIdentification {
 type string;
 mandatory true;
 description "The identification of the site where the
 ManagedFunction resides.";
 }

 leaf siteLatitude {
 type decimal64 {
 fraction-digits 4;
 range "-90.0000..+90.0000";
 }
 description "The latitude of the site where the ManagedFunction
 instance resides, based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to
 the northern hemisphere. This attribute is optional in case of
 BTSFunction and RNCFunction instance(s).";
 }

 leaf siteLongitude {
 type decimal64 {
 fraction-digits 4;
 range "-180.0000..+180.0000";
 }
 description "The longitude of the site where the ManagedFunction
 instance resides, based on World Geodetic System (1984 version)
 global reference frame (WGS 84). Positive values correspond to
 degrees east of 0 degrees longitude. This attribute is optional in
 case of BTSFunction and RNCFunction instance(s).";
 }

 leaf siteDescription {
 type string;
 mandatory true;
 description "An operator defined description of the site where
 the ManagedFunction instance resides.";
 }

 leaf equipmentType {
 type string;
 mandatory true;
 description "The type of equipment where the managedFunction
 instance resides.";
 reference "clause 4.4.1 of ETSI ES 202 336-12";
 }

 leaf environmentType {
 type string;
 mandatory true;
 description "The type of environment where the managedFunction
 instance resides.";
 reference "clause 4.4.1 of ETSI ES 202 336-12";
 }

 leaf powerInterface {
 type string;
 mandatory true;
 description "The type of power.";
 reference "clause 4.4.1 of ETSI ES 202 336-12";
 }
 }

 leaf priorityLabel {
 mandatory true;
 type uint32;
 }
 uses meas3gpp:SupportedPerfMetricGroupGrp;
 }

 grouping ManagedFunctionContainedClasses {
 description "A grouping used to containe classes (lists) contained by
 the abstract IOC ManagedFunction";
 list ManagedNFService {
 description "Represents a Network Function (NF)";
 reference "3GPP TS 23.501";
 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses ManagedNFServiceGrp;
 }
 }

 uses meas3gpp:MeasurementSubtree {
 if-feature MeasurementsUnderManagedFunction ;
 }

 uses trace3gpp:TraceSubtree {
 if-feature TraceUnderManagedFunction ;
 }
 }
}
<CODE ENDS>

Next change
[bookmark: _Toc105591929]D.2.4	module _3gpp-common-measurements.yang
<CODE BEGINS>
module _3gpp-common-measurements {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-measurements";
 prefix "meas3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines Measurement and KPI related groupings
 Any list/class intending to use this should include 2 or 3 uses statements
 controlled by a feature:

 A)
+++ feature MeasurementsUnderMyClass {
+++ description 'Indicates whether measurements and/or KPIs are supported
+++ for this class.';
+++ }

 B) include the attribute measurementsList and/or kPIsList indicating the
 supported measurment and KPI types and GPs. Note that for classes
 inheriting from ManagedFunction, EP_RP or SubNetwork these attributes are
 already inherited, so there is no need to include them once more. E.g.

+++ grouping MyClassGrp {
+++ uses meas3gpp:SupportedPerfMetricGroup;
+++ }

 C) include the class PerfmetricJob to control the measurements/KPIs. E.g.

 list MyClass {
 container attributes {
 uses MyClassGrp;
 }
+++ uses meas3gpp:MeasurementSubtree {
+++ if-feature MeasurementsUnderMyClass ;
+++ }
 }

 Measurements can be contained under ManagedElement, SubNetwork, or
 any list representing a class inheriting from Subnetwork or
 ManagedFunction. Note: KPIs will only be supported under SubNetwork";

 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2022-11-03 { reference CR-0192; }
 revision 2021-07-22 { reference "CR-0137"; }
 revision 2020-11-06 { reference "CR-0118"; }
 revision 2020-09-04 { reference "CR-000107"; }
 revision 2020-06-08 { reference "CR-0092"; }
 revision 2020-05-31 { reference "CR-0084"; }
 revision 2020-03-11 { reference "S5-201581, SP-200229"; }
 revision 2019-11-21 { reference "S5-197275, S5-197735"; }
 revision 2019-10-28 { reference "S5-193516"; }
 revision 2019-06-17 { reference " "; }

 grouping ThresholdInfoGrp {
 description "Defines a single threshold level.";

 leaf-list measurementTypes {
 type string;
 description "The Measurement type can be those specified in TS 28.552,
 TS 32.404 and can be those specified by other SDOs or can be
 vendor-specific.";
 }

 leaf thresholdLevel {
 type uint64;
 mandatory true;
 description "Number (key) for a single threshold in the threshold list
 applicable to the monitored performance metric.";
 }

 leaf thresholdDirection {
 type enumeration {
 enum UP;
 enum DOWN;
 enum UP_AND_DOWN;
 }
 must '. = "UP_AND_DOWN" or not(../hysteresis)' {
 error-message "In case a threshold with hysteresis is configured, the "
 +"threshold direction attribute shall be set to 'UP_AND_DOWN'.";
 }
 mandatory true;
 description "Direction of a threshold indicating the direction for which
 a threshold crossing triggers a threshold.

 When the threshold direction is configured to 'UP', the associated
 treshold is triggered only when the performance metric value is going
 up upon reaching or crossing the threshold value. The treshold is not
 triggered, when the performance metric is going down upon reaching or
 crossing the threshold value.

 Vice versa, when the threshold direction is configured to 'DOWN', the
 associated treshold is triggered only when the performance metric is
 going down upon reaching or crossing the threshold value. The treshold
 is not triggered, when the performance metric is going up upon reaching
 or crossing the threshold value.

 When the threshold direction is set to 'UP_AND_DOWN' the treshold is
 active in both direcions.

 In case a threshold with hysteresis is configured, the threshold
 direction attribute shall be set to 'UP_AND_DOWN'.";
 }

 leaf thresholdValue {
 type union {
 type int64;
 type decimal64 {
 fraction-digits 2;
 }
 }
 mandatory true;
 description "Value against which the monitored performance metric is
 compared at a threshold level in case the hysteresis is zero";
 }

 leaf hysteresis {
 type union {
 type uint64;
 type decimal64 {
 fraction-digits 2;
 range "0..max";
 }
 }
 description "Hysteresis of a threshold. If this attribute is present
 the monitored performance metric is not compared against the
 threshold value as specified by the thresholdValue attribute but
 against a high and low threshold value given by

 threshold-high = thresholdValue + hysteresis
 threshold-low = thresholdValue - hysteresis

 When going up, the threshold is triggered when the performance metric
 reaches or crosses the high threshold value. When going down, the
 hreshold is triggered when the performance metric reaches or crosses
 the low threshold value.

 A hysteresis may be present only when the monitored performance
 metric is not of type counter that can go up only. If present
 for a performance metric of type counter, it shall be ignored.";
 }
 }

 grouping SupportedPerfMetricGroupGrp {
 list SupportedPerfMetricGroup {
 config false;
 description "Captures a group of supported performance metrics and
 associated parameters related to their production and reporting.
 A SupportedPerfMetricGroup attribute which is part of an MOI may
 define performanceMetrics for any MOI under the subtree contained
 under that MOI, e.g. SupportedPerfMetricGroup on a ManagedElement
 can specify supported metrics for contained ManagedFunctions
 like a GNBDUFunction.";

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "Performance metrics include measurements defined in
 TS 28.552 and KPIs defined in TS 28.554. Performance metrics can
 also be specified by other SDOs or be vendor specific.
 Performance metrics are identfied with their names.

 For measurements defined in TS 28.552 the name is constructed as
 follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined in the KPI
 definitions template as the component designated with e).

 A name can also identify a vendor specific performance metric or a
 group of vendor specific performance metrics.";
 }

 leaf-list granularityPeriods {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 }

 leaf-list reportingMethods {
 type enumeration {
 enum FILE_BASED_LOC_SET_BY_PRODUCER;
 enum FILE_BASED_LOC_SET_BY_CONSUMER;
 enum STREAM_BASED;
 }
 min-elements 1;
 }

 leaf-list monitorGranularityPeriods {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 description "Granularity periods supported for the monitoring of
 associated measurement types for thresholds";
 }
 }
 }

 grouping PerfMetricJobGrp {
 description "Represents the attributtes of the IOC PerfMetricJob";

 leaf administrativeState {
 default UNLOCKED;
 type types3gpp:AdministrativeState ;
 description "Enable or disables production of the metrics";
 }

 leaf operationalState {
 config false;
 mandatory true;
 type types3gpp:OperationalState ;
 description "Indicates whether the PerfMetricJob is working.";
 }

 leaf jobId {
 type string;
 description "Id for a PerfMetricJob job.";
 }

 leaf-list performanceMetrics {
 type string;
 min-elements 1;
 description "Performance metrics include measurements defined in
 TS 28.552 and KPIs defined in TS 28.554. Performance metrics can
 also be those specified by other SDOs or vendor specific metrics.
 Performance metrics are identfied with their names. A name can also
 identify a vendor specific group of performance metrics.

 For measurements defined in TS 28.552 the name is constructed as
 follows:
 - 'family.measurementName.subcounter' for measurement types with
 subcounters
 - 'family.measurementName' for measurement types without subcounters
 - 'family' for measurement families

 For KPIs defined in TS 28.554 the name is defined in the KPI
 definitions template as the component designated with e).";
 }

 leaf granularityPeriod {
 type uint32 {
 range 1..max ;
 }
 units seconds;
 mandatory true;
 description "Granularity period used to produce measurements. The value
 must be one of the supported granularity periods for the metric.";
 }

 leaf-list objectInstances {
 type types3gpp:DistinguishedName;
 }

 leaf-list rootObjectInstances {
 type types3gpp:DistinguishedName;
 description "Each object instance designates the root of a subtree that
 contains the root object and all descendant objects.";
 }

 choice reportingCtrl {
 mandatory true;
 description "This choice defines the method for reporting collected
 performance metrics to MnS consumers as well as the parameters for
 configuring the reporting function. It is a choice between the control
 parameter required for the reporting methods, whose presence selects
 the reporting method as follows:
 - When only the fileReportingPeriod attribute is present, the MnS
 producer shall store files on the MnS producer at a location selected
 by the MnS producer and inform the MnS consumer about the availability
 of new files and the file location using the notifyFileReady
 notification.
 - When only the fileReportingPeriod and fileLocation attributes are
 present, the MnS producer shall store the files on the MnS consumer at
 the location specified by fileLocation. No notification is emitted by
 the MnS producer.
 - When only the streamTarget attribute is present, the MnS producer
 shall stream the data to the location specified by streamTarget.

 For the file-based reporting methods the fileReportingPeriod attribute
 specifies the time window during which collected measurements are stored
 into the same file before the file is closed and a new file is opened.";

 case file-based-reporting {
 leaf fileReportingPeriod {
 type uint32 {
 range 1..max;
 }
 units minutes;
 must '(number(.)*"60") mod number(../granularityPeriod) = "0"' {
 error-message
 "The time-period must be a multiple of the granularityPeriod.";
 }
 mandatory true;
 description "For the file-based reporting method this is the time
 window during which collected measurements are stored into the same
 file before the file is closed and a new file is opened.
 The time-period must be a multiple of the granularityPeriod.

 Applicable when the file-based reporting method is supported";
 }

 leaf fileLocation {
 type string ;
 description "Applicable and must be present when the file-based
 reporting method is supported, and the files are stored on the MnS
 consumer.";
 }
 }
 case stream-based-reporting {
 leaf streamTarget {
 type string;
 mandatory true;
 description "Applicable when stream-based reporting method is
 supported.";
 }
 }
 }
 }

 grouping ThresholdMonitorGrp {
 description "A threshold monitor that is created by the consumer for
 the monitored entities whose measurements are required by consumer
 to monitor.";

 leaf administrativeState {
 default UNLOCKED;
 type types3gpp:AdministrativeState ;
 description "Enables or disables the ThresholdMonitor.";
 }

 leaf operationalState {
 config false;
 mandatory true;
 type types3gpp:OperationalState ;
 description "Indicates whether the ThresholdMonitor is working.";
 }

 list thresholdInfoList {
 key idx;
 min-elements 1;
 leaf idx { type uint32 ; }
 uses ThresholdInfoGrp;
 }

 leaf monitorGranularityPeriod {
 type uint32 {
 range "1..max";
 }
 units second;
 mandatory true;
 description " Granularity period used to monitor measurements for
 threshold crossings. ";
 }

 leaf-list objectInstances {
 type types3gpp:DistinguishedName;
 yext3gpp:notNotifyable;
 }

 leaf-list rootObjectInstances {
 type types3gpp:DistinguishedName;
 description "Each object instance designates the root of a subtree that
 contains the root object and all descendant objects.";
 yext3gpp:notNotifyable;
 }
 }

 grouping MeasurementSubtree {
 description "Contains classes that define measurements.
 Should be used in all classes (or classes inheriting from)
 - SubNnetwork
 - ManagedElement
 - ManagedFunction

 If a YANG module wants to augment these classes/list/groupings they must
 augment all user classes!

 If a class uses this grouping in its list it shall also use the
 grouping SupportedPerfMetricGroupGrp to add SupportedPerfMetricGroup as
 an attribute to its grouping";

 list PerfMetricJob {
 description "This IOC represents a performance metric production job. It
 can be name-contained by SubNetwork, ManagedElement, or ManagedFunction.

 To activate the production of the specified performance metrics, a MnS
 consumer needs to create a PerfMetricJob instance on the MnS producer.
 For ultimate deactivation of metric production, the MnS consumer should
 delete the job to free up resources on the MnS producer.

 For temporary suspension of metric production, the MnS consumer can
 manipulate the value of the administrative state attribute. The MnS
 producer may disable metric production as well, for example in overload
 situations. This situation is indicated by the MnS producer with setting
 the operational state attribute to disabled. When production is resumed
 the operational state is set back to enabled.

 The jobId attribute can be used to associate metrics from multiple
 PerfMetricJob instances. The jobId can be included when reporting
 performance metrics to allow a MnS consumer to associate received
 metrics for the same purpose. For example, it is possible to configure
 the same jobId value for multiple PerfMetricJob instances required to
 produce the measurements for a specific KPI.

 The attribute performanceMetrics defines the performance metrics to be
 produced and the attribute granularityPeriod defines the granularity
 period to be applied.

 All object instances below and including the instance name-containing
 the PerfMetricJob (base object instance) are scoped for performance
 metric production. Performance metrics are produced only on those object
 instances whose object class matches the object class associated to the
 performance metrics to be produced.

 The attributes objectInstances and rootObjectInstances allow to restrict
 the scope. When the attribute objectInstances is present, only the object
 instances identified by this attribute are scoped. When the attribute
 rootObjectInstances is present, then the subtrees whose root objects are
 identified by this attribute are scoped. Both attributes may be present
 at the same time meaning the total scope is equal to the sum of both
 scopes. Object instances may be scoped by both the objectInstances and
 rootObjectInstances attributes. This shall not be considered as an error
 by the MnS producer.

 When the performance metric requires performance metric production on
 multiple managed objects, which is for example the case for KPIs, the
 MnS consumer needs to ensure all required objects are scoped. Otherwise
 a PerfMetricJob creation request shall fail.

 The attribute reportingCtrl specifies the method and associated control
 parameters for reporting the produced measurements to MnS consumers.
 Three methods are available: file-based reporting with selection of the
 file location by the MnS producer, file-based reporting with selection
 of the file location by the MnS consumer and stream-based reporting.

 For file-based reporting, all performance metrics that are produced
 related to a 'PerfMetricJob' instance for a reporting period shall be
 stored in a single reporting file.

 When the administrative state is set to 'UNLOCKED' after the creation
 of a 'PerfMetricJob' the first granularity period shall start. When
 the administrative state is set to 'LOCKED' or the operational state
 to 'DISABLED', the ongoing reporting period shall be aborted, for
 streaming the ongoing granularity period. When the administrative
 state is set back to 'UNLOCKED' or the operational state to 'ENABLED'
 a new reporting period period shall start, in case of streaming a new
 granularity period.

 Changes of all other configurable attributes shall take effect only at
 the beginning of the next reporting period, for streaming at the
 beginning of the next granularity period.

 When the 'PerfMetricJob' is deleted, the ongoing reporting period shall
 be aborted, for streaming the ongoing granularity period.

 A PerfMetricJob creation request shall fail, when the requested
 performance metrics, the requested granularity period, the requested
 repoting method, or the requested combination thereof is not supported
 by the MnS producer.

 Creation and deletion of PerfMetricJob instances by MnS consumers is
 optional; when not supported, PerfMetricJob instances may be created and
 deleted by the system or be pre-installed.";

 key id;
 uses top3gpp:Top_Grp ;
 container attributes {
 uses PerfMetricJobGrp ;
 }
 }

 list ThresholdMonitor {
 key id;
 description "Represents a threshold monitor for performance metrics.
 It can be contained by SubNetwork, ManagedElement, or ManagedFunction.
 A threshold monitor checks for threshold crossings of performance metric
 values and generates a notification when that happens.

 To activate threshold monitoring, a MnS consumer needs to create a
 ThresholdMonitor instance on the MnS producer. For ultimate deactivation
 of threshold monitoring, the MnS consumer should delete the monitor to
 free up resources on the MnS producer.

 For temporary suspension of threshold monitoring, the MnS consumer can
 manipulate the value of the administrative state attribute. The MnS
 producer may disable threshold monitoring as well, for example in
 overload situations. This situation is indicated by the MnS producer with
 setting the operational state attribute to disabled. When monitoring is
 resumed the operational state is set again to enabled.

 All object instances below and including the instance containing the
 ThresholdMonitor (base object instance) are scoped for performance
 metric production. Performance metrics are monitored only on those
 object instances whose object class matches the object class associated
 to the performance metrics to be monitored.

 The optional attributes objectInstances and rootObjectInstances allow to
 restrict the scope. When the attribute objectInstances is present, only
 the object instances identified by this attribute are scoped. When the
 attribute rootObjectInstances is present, then the subtrees whose root
 objects are identified by this attribute are scoped. Both attributes may
 be present at the same time meaning the total scope is equal to the sum
 of both scopes. Object instances may be scoped by both the objectInstances
 and rootObjectInstances attributes. This shall not be considered as an
 error by the MnS producer.

 Multiple thresholds can be defined for multiple performance metric sets
 in a single monitor using thresholdInfoList. The attribute
 monitorGranularityPeriod defines the granularity period to be applied.

 Each threshold is identified with a number (key) called thresholdLevel.
 A threshold is defined using the attributes thresholdValue ,
 thresholdDirection and hysteresis.

 When hysteresis is absent or carries no information, a threshold is
 triggered when the thresholdValue is reached or crossed. When hysteresis
 is present, two threshold values are specified for the threshold as
 follows: A high treshold value equal to the threshold value plus the
 hysteresis value, and a low threshold value equal to the threshold value
 minus the hysteresis value. When the monitored performance metric
 increases, the threshold is triggered when the high threshold value is
 reached or crossed. When the monitored performance metric decreases, the
 threshold is triggered when the low threshold value is reached or crossed.
 The hsyteresis ensures that the performance metric value can oscillate
 around a comparison value without triggering each time the threshold when
 the threshold value is crossed.

 Using the thresholdDirection attribute a threshold can be configured in
 such a manner that it is triggered only when the monitored performance
 metric is going up or down upon reaching or crossing the threshold.

 A ThresholdMonitor creation request shall be rejected, if the performance
 metrics requested to be monitored, the requested granularity period, or
 the requested combination thereof is not supported by the MnS producer.
 A creation request may fail, when the performance metrics requested to be
 monitored are not produced by a PerfMetricJob.

 Creation and deletion of ThresholdMonitor instances by MnS consumers is
 optional; when not supported, ThresholdMonitor instances may be created
 and deleted by the system or be pre-installed.";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses ThresholdMonitorGrp ;
 }
 }
 }
}
<CODE ENDS>

Next change
[bookmark: _Toc36033516][bookmark: _Toc36475778][bookmark: _Toc44581539][bookmark: _Toc51769155][bookmark: _Toc105591932][bookmark: _Toc27489934][bookmark: _Toc36033517][bookmark: _Toc36475779][bookmark: _Toc44581540][bookmark: _Toc51769156][bookmark: _Toc105591933]D.2.6a	module _3gpp-common-subscription-control.yang
<CODE BEGINS>
module _3gpp-common-subscription-control {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-subscription-control";
 prefix "subscr3gpp";

 import _3gpp-common-yang-extensions { prefix yext3gpp; }
 import _3gpp-common-top { prefix top3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines IOCs for subscription and heartbeat control.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions
 3GPP TS 28.623";

 revision 2022-11-03 { reference CR-0192; }
 revision 2021-01-16 { reference "CR-0120"; }
 revision 2020-08-26 { reference "CR-0106"; }
 revision 2019-11-29 { reference "S5-197648 S5-197647 S5-197829 S5-197828"; }

 grouping NtfSubscriptionControlGrp {
 description "Attributes of a specific notification subscription";

 leaf notificationRecipientAddress {
 type string;
 mandatory true;
 }

 leaf-list notificationTypes {
 type string;
 description "Defines the types of notifications that are candidates
 for being forwarded to the notification recipient.
 If the notificationFilter attribute is not supported or not present
 all candidate notifications types are forwarded to the notification;
 discriminated by notificationFilter attribute.";
 }

 list scope {
 key "scopeType";
 min-elements 1;
 max-elements 1;
 description "Describes which object instances are selected with
 respect to a base object instance.";

 leaf scopeType {
 type enumeration {
 enum BASE_ONLY;
 enum BASE_ALL;
 enum BASE_NTH_LEVEL;
 enum BASE_SUBTREE;
 }
 description "If the optional scopeLevel parameter is not supported
 or absent, allowed values of scopeType are BASE_ONLY and BASE_ALL.

 The value BASE_ONLY indicates only the base object is selected.
 The value BASE_ALL indicates the base object and all of its
 subordinate objects (incl. the leaf objects) are selected.

 If the scopeLevel parameter is supported and present, allowed
 values of scopeType are BASE_ALL, BASE_ONLY, BASE_NTH_LEVEL
 and BASE_SUBTREE.

 The value BASE_NTH_LEVEL indicates all objects on the level,
 which is specified by the scopeLevel parameter, below the base
 object are selected. The base object is at scopeLevel zero.
 The value BASE_SUBTREE indicates the base object and all of its
 subordinate objects down to and including the objects on the level,
 which is specified by the scopeLevel parameter, are selected.
 The base object is at scopeLevel zero.";
 }

 leaf scopeLevel {
 when '../scopeType = "BASE_NTH_LEVEL" or ../scopeType = "BASE_SUBTREE"';
 type uint16;
 mandatory true;
 description "See description of scopeType.";
 }
 }

 leaf notificationFilter {
 type string;
 description "Defines a filter to be applied to candidate notifications
 identified by the notificationTypes attribute.
 If notificationFilter is present, only notifications that pass the
 filter criteria are forwarded to the notification recipient; all other
 notifications are discarded.
 The filter can be applied to any field of a notification.";
 }
 }

 grouping HeartbeatControlGrp {
 description "Attributes of HeartbeatControl.";
 description "Attributes of HeartbeatControl. Note the triggerHeartbeatNtf
 attribute has no mapping in the present release.";

 leaf heartbeatNtfPeriod {
 type uint32;
 mandatory true;
 units seconds;
 description "Specifies the periodicity of heartbeat notification emission.
 The value of zero has the special meaning of stopping the heartbeat
 notification emission.";
 }

 leaf triggerHeartbeatNtf {
 type boolean;
 default false;
 description "Setting this attribute to 'true' triggers an immediate
 additional heartbeat notification emission. Setting the value to
 'false' has no observable result.

 The periodicity of notifyHeartbeat emission is not changed.

 After triggering the heartbeat the system SHALL set the value
 back to false.";
 yext3gpp:notNotifyable;
 }
 }

 grouping SubscriptionControlSubtree {
 description "Contains notification subscription related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list NtfSubscriptionControl {
 description "A NtfSubscriptionControl instance represents the
 notification subscription of a particular notification recipient.
 The scope attribute is used to select managed object instances.
 The base object instance of the scope is the object instance
 name-containing the NtfSubscriptionControl instance.
 The notifications related to the selected managed object instances
 are candidates to be sent to the address specified by the
 notificationRecipientAddress attribute.
 The notificationType attribute and notificationFilter attribute
 allow MnS consumers to exercise control over which candidate
 notifications are sent to the notificationRecipientAddress.
 If the notificationType attribute is supported and present, its
 value identifies the
 types of notifications that are candidate to be sent to the
 notificationRecipientAddress. If the notificationType attribute is
 not supported or not present, all types of notifications are
 candidate to be sent to notificationRecipientAddress.
 If supported, the notificationFilter attribute defines a filter that
 is applied to the set of candidate notifications. Only candidate
 notifications that pass the filter criteria are sent to the
 notificationRecipientAddress. If the notificationFilter attribute is
 not supported all candidate notificatios are sent to the
 notificationRecipientAddress.
 To receive notifications, a MnS consumer has to create
 NtfSubscriptionControl object instancess on the MnS producer.
 A MnS consumer can create a subscription for another MnS consumer
 since it is not required the notificationRecipientAddress be his own
 address.
 When a MnS consumer does not wish to receive notifications any more
 the MnS consumer shall delete the corresponding NtfSubscriptionControl
 instance.
 Creation and deletion of NtfSubscriptionControl instances by MnS
 consumers is optional; when not supported, the NtfSubscriptionControl
 instances may be created and deleted by the system or be
 pre-installed.";

 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses NtfSubscriptionControlGrp;
 }

 list HeartbeatControl {
 description "MnS consumers (i.e. notification recipients) use heartbeat
 notifications to monitor the communication channels between them and
 data reporting MnS producers emitting notifications such as
 notifyNewAlarm and notifyFileReady.

 A HeartbeatControl instance allows controlling the emission of
 heartbeat notifications by MnS producers. The recipients of heartbeat
 notifications are specified by the notificationRecipientAddress
 attribute of the NtfSubscriptionControl instance containing the
 HeartbeatControl instance.

 Note that the MnS consumer managing the HeartbeatControl instance
 and the MnS consumer receiving the heartbeat notifications may not be
 the same.

 As a pre-condition for the emission of heartbeat notifications, a
 HeartbeatControl instance needs to be created. Creation of an instance
 with an initial non-zero value of the heartbeatNtfPeriod attribute
 triggers an immediate heartbeat notification emission. Creation of an
 instance with an initial zero value of the heartbeatPeriod attribute
 does not trigger an emission of a heartbeat notification. Deletion of
 an instance does not trigger an emission of a heartbeat notification.

 Once the instance is created, heartbeat notifications are emitted with
 a periodicity defined by the value of the heartbeatNtfPeriod
 attribute. No heartbeat notifications are emitted if the value is
 equal to zero. Setting a zero value to a non zero value, or a non zero
 value to a different non zero value, triggers an immediate heartbeat
 notification, that is the base for the new heartbeat period. Setting a
 non zero value to a zero value stops emitting heartbeats immediately;
 no final heartbeat notification is sent.

 Creation and deletion of HeartbeatControl instances by MnS Consumers
 is optional; when not supported, the HeartbeatControl instances may be
 created and deleted by the system or be pre-installed.

 Whether and when to emit heartbeat notifications is controlled by
 HeartbeatControl. Subscription for heartbeat is not supported via the
 NtfSubscriptionControl.";

 max-elements 1;
 key id;
 uses top3gpp:Top_Grp;

 container attributes {
 uses HeartbeatControlGrp;
 }
 }
 }
 }
}
<CODE ENDS>

Next change

D.2.7	module _3gpp-common-yang-extensions@2019-06-23.yang
<CODE BEGINS>
module _3gpp-common-yang-extensions {
 yang-version 1.1;
 namespace urn:3gpp:sa5:_3gpp-common-yang-extensions ;
 prefix yext3gpp ;

 organization "3GPP SA5";
 description "The module defines YANG extensions needed
 3GPP YANG modeling.

 Copyright (c) 2019 3GPP. All rights reserved.

 Extensions MUST be defined with the following structure in the
 description statement:
 - What is this statement.
 - Newline,
 - This statement can be a substatement of the xxx statements with
 cardinality x..y.
 - This statement can have the following substatements with
 cardinality x..y.
 - Newline
 - Is changing this statement an editorial, BC(backwards compatible)
 or NBC(non-BC) change?
 - Newline.
 - The argument its meaning and type. Preferably use YANG types and
 constraints to define the argument's type.

 Any extension statement can be added with a
 deviation/deviate add statement. In this case the restriction about
 the parent statement of the extension SHALL be evaluated based on the
 target of the deviation statement.

 Support for this module does not mean that a YANG server implements
 support for each of these extensions.
 Implementers of each specific module using an extensions MUST check
 if the server implements support for the used extension.
 Note: modules use many extensions which individual
 implementations MAY or MAY NOT support.
 If support for an extension is missing the extension statement needs
 individual handling or it SHOULD be removed from the module using
 the extension e.g. with a deviation.
 ";

 revision 2022-11-03 { reference CR-0192; }
 revision 2019-06-23 { description "Initial version"; }

 extension notNotifyable {
 description
 "Indicates that data change notifications shall not be sent
 for this attribute. If the extension is not present and other
 conditions are fulfilled data change notification should be sent.
 If a list or container already has the notNotifyable
 extension, that is also valid for all contained data nodes.

 The statement MUST only be a substatement of a leaf, leaf-list, list,
 container statement that is contained within the 'attributes'
 container of an IOC and that represents an attribute or sub-parts of
 an attribute .

 Zero or one notNotifyable statement is allowed per parent statement.
 NO substatements are allowed.

 Adding this statement is an NBC change, removing it is BC.";
 revision "2019-06-23" {
 description "Initial version";
 }

 extension inVariant {
 description
 "Indicates that the value for the data node can only be set when its
 parent data node is being created. To change the value after that, the
 parent data node must be deleted and recreated with the data node
 having the new value.

 It is unnecessary to use and MUST NOT be used for key leafs.

 The statement MUST only be a substatement of a leaf, leaf-list, list
 statements that is config=true.
 Zero or one inVariant statement is allowed per parent statement.
 NO substatements are allowed.

 Adding this statement is an NBC change, removing it is BC.";
 }

 extension initial-value {
 description "Specifies a value that the system will set for a leaf
 leaf-list if a value is not specified for it when its parent list
 or container is created. The value has no effect in any other
 modification e.g. changing or removing the value.

 The description statement of the parent statement SHOULD contain
 the label 'Initial-value: ' followed by the text from the argument.

 The statement MUST only be a substatement of a leaf or leaf-list.
 The statement MUST NOT be present if the leaf or the leaf-list
 has a default statement or the type used for the data node
 has a default value.
 The statement MUST NOT be used for config=false data or in an
 action, rpc or notification.
 Zero or one initial-value statements are allowed for a leaf parent
 statement. Zero or more initial-value statements are allowed for a
 leaf-list parent statement. If the leaf-list is ordered-by user, the
 initial values are stored in the order they appear in the YANG definition.
 NO substatements are allowed.

 Always consider using a YANG-default statement instead.

 Modification of the initial-value is a non-backwards-compatible change.

 The argument specifies a single initial value for a leaf or leaf-list.
 The value MUST be part of the valuespace of the leaf/leaf-list.
 It follows the same rules as the argument of the default statement.";

 argument "initial-value";
 }
}
<CODE ENDS>

Next change
[bookmark: _Toc36033519][bookmark: _Toc36475781][bookmark: _Toc44581542][bookmark: _Toc51769158][bookmark: _Toc105591935]D.2.9	module _3gpp-common-fm.yang
<CODE BEGINS>
module _3gpp-common-fm {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-fm";
 prefix "fm3gpp";

 import ietf-yang-types { prefix yang; }
 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-types { prefix types3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines a Fault Management model";

 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions

 3GPP TS 28.622
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Information Service (IS)";

 revision 2022-11-03 { reference CR-0192; }
 revision 2021-08-08 { reference "CR-0132"; }
 revision 2021-06-02 { reference "CR-0130"; }
 revision 2020-06-03 { reference "CR-0091"; }
 revision 2020-02-24 {
 reference "S5-201365";
 }

 typedef eventType {
 type enumeration {
 enum COMMUNICATIONS_ALARM {
 value 2;
 }

 enum QUALITY_OF_SERVICE_ALARM {
 value 3;
 }

 enum PROCESSING_ERROR_ALARM {
 value 4;
 }

 enum EQUIPMENT_ALARM {
 value 5;
 }

 enum ENVIRONMENTAL_ALARM {
 value 6;
 }

 enum INTEGRITY_VIOLATION {
 value 7;
 }

 enum OPERATIONAL_VIOLATION {
 value 8;
 }

 enum PHYSICAL_VIOLATIONu {
 value 9;
 }

 enum SECURITY_SERVICE_OR_MECHANISM_VIOLATION {
 value 10;
 }

 enum TIME_DOMAIN_VIOLATION {
 value 11;
 }
 }

 description "General category for the alarm.";
 }

 typedef severity-level {
 type enumeration {
 enum CRITICAL { value 3; }
 enum MAJOR { value 4; }
 enum MINOR { value 5; }
 enum WARNING { value 6; }
 enum INDETERMINATE { value 7; }
 enum CLEARED { value 8; }
 }

 description "The possible alarm serverities.
 Aligned with ERICSSON-ALARM-MIB.";
 }

 grouping AlarmRecordGrp {
 description "Contains alarm information of an alarmed object instance.
 A new record is created in the alarm list when an alarmed object
 instance generates an alarm and no alarm record exists with the same
 values for objectInstance, alarmType, probableCause and specificProblem.
 When a new record is created the MnS producer creates an alarmId, that
 unambiguously identifies an alarm record in the AlarmList.

 Alarm records are maintained only for active alarms. Inactive alarms are
 automatically deleted by the MnS producer from the AlarmList.
 Active alarms are alarms whose
 a) perceivedSeverity is not CLEARED, or whose
 b) perceivedSeverity is CLEARED and its ackState is not ACKNOWLEDED.";

 leaf alarmId {
 type string;
 mandatory true;
 description "Identifies the alarmRecord";
 yext3gpp:notNotifyable;
 }

 leaf objectInstance {
 type string;
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf notificationId {
 type int32;
 config false ;
 mandatory true;
 yext3gpp:notNotifyable;
 }

 leaf alarmRaisedTime {
 type yang:date-and-time ;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf alarmChangedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm has not changed";
 yext3gpp:notNotifyable;
 }

 leaf alarmClearedTime {
 type yang:date-and-time ;
 config false ;
 description "not applicable if related alarm was not cleared";
 yext3gpp:notNotifyable;
 }

 leaf alarmType {
 type eventType;
 config false ;
 description "General category for the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf probableCause {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf specificProblem {
 type string;
 config false ;
 reference "ITU-T Recommendation X.733 clause 8.1.2.2.";
 yext3gpp:notNotifyable;
 }

 leaf perceivedSeverity {
 type severity-level;
 description "This is Writable only if producer supports consumer
 to set perceivedSeverity to CLEARED";
 yext3gpp:notNotifyable;
 }

 leaf backedUpStatus {
 type string;
 config false ;
 description "Indicates if an object (the MonitoredEntity) has a back
 up. See definition in ITU-T Recommendation X.733 clause 8.1.2.4.";
 yext3gpp:notNotifyable;
 }

 leaf backUpObject {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf trendIndication {
 type string;
 config false ;
 description "Indicates if some observed condition is getting better,
 worse, or not changing. ";
 reference "ITU-T Recommendation X.733 clause 8.1.2.6.";
 yext3gpp:notNotifyable;
 }

 grouping ThresholdPackGrp {
 leaf thresholdLevel {
 type string;
 }
 leaf thresholdValue {
 type string;
 }
 leaf hysteresis {
 type string;
 description "The hysteresis has a threshold high and a threshold
 low value that are different from the threshold value.
 A hysteresis, therefore, defines the threshold-high and
 threshold-low levels within which the measurementType value is
 allowed to oscillate without triggering the threshold crossing
 notification.";
 }
 }

 grouping ThresholdInfoGrp {
 leaf measurementType {
 type string;
 mandatory true;
 }

 leaf direction {
 type enumeration {
 enum INCREASING;
 enum DECREASING;
 }
 mandatory true;
 description "
 If it is 'Increasing', the threshold crossing notification is
 triggered when the measurement value equals or exceeds a
 thresholdValue.

 If it is 'Decreasing', the threshold crossing notification is
 triggered when the measurement value equals or below a
 thresholdValue.";
 }

 uses ThresholdPackGrp;
 }

 list thresholdInfo {
 config false ;
 uses ThresholdInfoGrp;
 yext3gpp:notNotifyable;
 }

 leaf stateChangeDefinition {
 type string;
 config false ;
 description "Indicates MO attribute value changes. See definition
 in ITU-T Recommendation X.733 clause 8.1.2.11.";
 yext3gpp:notNotifyable;
 }

 leaf monitoredAttributes {
 type string;
 config false ;
 description "Indicates MO attributes whose value changes are being
 monitored.";
 reference "ITU-T Recommendation X.733 clause 8.1.2.11.";
 yext3gpp:notNotifyable;
 }

 leaf proposedRepairActions {
 type string;
 config false ;
 description "Indicates proposed repair actions. See definition in
 ITU-T Recommendation X.733 clause 8.1.2.12.";
 yext3gpp:notNotifyable;
 }

 leaf additionalText {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }

 anydata additionalInformation {
 config false ;
 yext3gpp:notNotifyable;
 }

 leaf rootCauseIndicator {
 type enumeration {
 enum YES;
 enum NO;
 }
 config false ;
 description "It indicates that this AlarmInformation is the root cause
 of the events captured by the notifications whose identifiers are in
 the related CorrelatedNotification instances.";
 yext3gpp:notNotifyable;
 }

 leaf ackTime {
 type yang:date-and-time ;
 config false ;
 description "It identifies the time when the alarm has been
 acknowledged or unacknowledged the last time, i.e. it registers the
 time when ackState changes.";
 yext3gpp:notNotifyable;
 }

 leaf ackUserId {
 type string;
 description "It identifies the last user who has changed the
 Acknowledgement State.";
 yext3gpp:notNotifyable;
 }

 leaf ackSystemId {
 type string;
 description "It identifies the system (Management System) that last
 changed the ackState of an alarm, i.e. acknowledged or unacknowledged
 the alarm.";
 yext3gpp:notNotifyable;
 }

 leaf ackState {
 type enumeration {
 enum ACKNOWLEDGED {
 description "The alarm has been acknowledged.";
 }
 enum UNACKNOWLEDGED {
 description "The alarm has unacknowledged or the alarm has never
 been acknowledged.";
 }
 }
 yext3gpp:notNotifyable;
 }

 leaf clearUserId {
 type string;
 description "Carries the identity of the user who invokes the
 clearAlarms operation.";
 yext3gpp:notNotifyable;
 }

 leaf clearSystemId {
 type string;
 yext3gpp:notNotifyable;
 }

 leaf serviceUser {
 type string;
 config false ;
 description "It identifies the service-user whose request for service
 provided by the serviceProvider led to the generation of the
 security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf serviceProvider {
 type string;
 config false ;
 description "It identifies the service-provider whose service is
 requested by the serviceUser and the service request provokes the
 generation of the security alarm.";
 yext3gpp:notNotifyable;
 }

 leaf securityAlarmDetector {
 type string;
 config false ;
 yext3gpp:notNotifyable;
 }
 }

 grouping AlarmListGrp {
 description "Represents the AlarmList IOC.";

 leaf administrativeState {
 type types3gpp:AdministrativeState ;
 default LOCKED;
 description "When set to UNLOCKED, the alarm list is updated.
 When the set to LOCKED, the existing alarm records are not
 updated, and new alarm records are not added to the alarm list.";
 }

 leaf operationalState {
 type types3gpp:OperationalState ;
 default DISABLED;
 config false;
 description "The producer sets this attribute to ENABLED, indicating
 that it has the resource and ability to record alarm in AlarmList
 else, it sets the attribute to DISABLED.";
 }

 leaf numOfAlarmRecords {
 type uint32 ;
 config false;
 mandatory true;
 description "The number of alarm records in the AlarmList";
 yext3gpp:notNotifyable;
 }

 leaf lastModification {
 type yang:date-and-time ;
 config false;
 description "The last time when an alarm record was modified";
 yext3gpp:notNotifyable;
 }

 list alarmRecords {
 key alarmId;
 description "List of alarmRecords";
 uses AlarmRecordGrp;
 yext3gpp:notNotifyable;
 }
 }

 grouping FmSubtree {
 description "Contains FM related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list AlarmList {
 key id;
 max-elements 1;
 description "The AlarmList represents the capability to store and manage
 alarm records. The management scope of an AlarmList is defined by all
 descendant objects of the base managed object, which is the object
 name-containing the AlarmList, and the base object itself.

 AlarmList instances are created by the system or are pre-installed.
 They cannot be created nor deleted by MnS consumers.

 When the alarm list is locked or disabled, the existing alarm records
 are not updated, and new alarm records are not added to the alarm list";

 uses top3gpp:Top_Grp ;
 container attributes {
 uses AlarmListGrp ;
 }
 }
 }

}
<CODE ENDS>

End of changes

