Page 1

3GPP TSG-SA5 Meeting #146

 DOCPROPERTY MtgTitle * MERGEFORMAT
S5-226759
Toulouse, France, 14th Nov 2022 - 18th Nov 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0068
	rev
	1
	Current version:
	16.7.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-16 CR 32.158 Clarify media type related aspects

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	2022-11-03

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	Two GET response formats are specified, but the description how the response format is selected is missing.

	
	

	Summary of change:
	The description on the response format negotiation is added.

	
	

	Consequences if not approved:
	Umbiguity may result in not aligned MnS consumer and MnS producer implementations impairing interoperability.

	
	

	Clauses affected:
	4.3, 4.3.1, 4.3.2 (new), A.2.1, A.2.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

4.3
Message content formats
4.3.1
Media types
The format of HTTP request and response message content is indicated with media types consisting of a type, a subtype and optional parameters, as defined in clause 3.1.1.1 of RFC 7231 [2]. The "Content-Type" header field of a message contains the media type of the message content (clause 3.1.1.5 of RFC 7231 [2]).

If not otherwise stated, the media type of request and response message bodies in the REST SS is

-
application/json (RFC 7159 [6]).

Exceptions are when JSON patch documents are contained in request bodies. They are identified with the media types
-
application/merge-patch+json (RFC 7396 [12], and clause 6.3.2 of the present document),
-
application/json-patch+json (RFC 6902 [13], and clause 6.3.3 of the present document).

Furthermore, this specification defines four new formats for JSON documents. Their media types are
-
application/3gpp-merge-patch+json (clause 6.4.2 of the present document),
-
application/3gpp-json-patch+json (clause 6.4.3 of the present document),
-
application/vnd.3gpp.object-tree-hierarchical+json (clause 6.1.4 of the present document),
-
application/vnd.3gpp.object-tree-flat+json (clause 6.1.4 of the present document).

JSON documents shall conform to JSON Schema ([7], [8], [9]).
4.3.2
Response content format negotiation

The MnS Producer shall engage in proactive content negotiation as defined in clause 3.4.1 of RFC 7231 [2] by including the "Accept" header field in HTTP requests that expect a message body in the response. The "Accept" header field indicates to the MnS Producer the media types acceptable to the MnS Consumer.
	Next modification

6.1.4
Construction rules for the response message body

When multiple resources are selected for retrieval by HTTP GET, the response message body with the selected resource set shall be constructed according to one of the following rules.

Flat response construction method: The resources are returned as a flat list of JSON objects. Their location in the hierarchical containment tree shall be specified by, e.g. , their URI or Distinguished Name (DN) which needs to be returned for each resource. The object class name of each resource should be returned as well.
Hierarchical response construction method: The resources are returned inside the containment tree as specified by the JSON schema definition of the information model. For the resources that are not selected, the following applies:

-
A resource is not returned at all if it is not an ancestor of any of the selected resources.

-
A resource is returned empty, except for the resource identifiers, if it is a descendant of the base resource and an ancestor of any of the selected resources

The containment tree present in the response message shall always start with the base resource.
If no resource is identified in the retrieval request the MnS producer shall return an error response with "404 Not Found" in the status line.
The following media types shall be used to distinguish the flat and the hierarchical response representation:
· application/vnd.3gpp.object-tree-flat+json

· application/vnd.3gpp.object-tree-hierarchical+json
The "application/json" media type may be used alternatively and defaults to the hierarchical representation format.
The MnS Consumer shall indicate the acceptable representations in the "Accept" header, as described in clause 4.3.2. One or multiple media types may be specified. If the MnS Producer cannot provide an acceptable representation, a "406 Not Acceptable" error response shall be returned. The MnS Consumer may send a second request with another media type specified in the "Accept" header.
	Next modification

A.2.1
Retrieval of a single complete resource with HTTP GET

To retrieve a complete "XyzFunction" resource the MnS Consumer might send the following request.

	GET /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Accept: application/json

The response includes the resource representation

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

}

Alternatively, the response might include a key ("XyzFunction") specifying the class name of the returned resource

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

]

}

In the example above "XyzFunction" is of type array to align with the JSON schema of "XyzFunction" defined in clause A.1. Alternatively, "XyzFunction" might also be an object, since the JSON schema specifying the response message body is not required to be identical to the JSON schema specifying the resources contained by a resource.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "XyzFunction": {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

}

Alternatively, when using a "data" object the response might look like

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "data": {

 "XyzFunction": {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

 }

}

The MnS Consumer can request also to return a response constructed according to the flat response construction method. In this case the "Accept" header contains the "application/vnd.3gpp.object-tree-flat+json" media type.

	GET /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Accept: application/vnd.3gpp.object-tree-flat+json

The response looks like:
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.object-tree-flat+json

[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

]

The exact syntax of the response body is specified by the JSON schema included in the concrete MnS definition. In current MnS definitions the format of the first example response above is used. This style is also followed in subsequent examples.

	Next modification

A.2.3
Retrieval of multiple complete resources using scoping and filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The base object and all objects at scope level "1", irrespective of their object class, are included in the response. The acceptable response media type specified by the "Accept" header field is "application/json", which indicates to the MnS producer to use the hierarchical response construction method:
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

The MnS Consumer can request also to return a response constructed according to the flat response construction method. In this case the "Accept" header contains the "application/vnd.3gpp.object-tree-flat+json" media type.
	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/vnd.3gpp.object-tree-flat+json

The response looks like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/vnd.3gpp.object-tree-flat+json

[

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 },

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 },

 {

 "id": "PMJ1",

 "ojectClass": "PerfMetricJob",

 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 },

 {

 "id": "TM1",

 "ojectClass": "ThresholdMonitor",

 "objectInstance": "SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

The "objectInstance" of each returned object is present in the response, as required in clause 6.1.4.

When only objects at scope level "1" are requested to be returned, the request looks like:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1

Host: example.org

Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the two "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide the containment nodes for the "XyzFunction" objects.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only the two "XyzFunction" objects without containment nodes.

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

The following example selects all objects of any class on scope level "1" that have a "location" attribute whose value is equal to "Grunewald":

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=1\

 filter=/*/*[attributes[location="Grunewald"]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "ManagedElement" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

]

}

The input document to the XPath expression is a document whose root node is the object identified by the path component of the target URI and that includes the object representations of the scoped objects. In this example the root node is the "SubNetwork", but it is not scoped and hence included in the input document with its "id" only, i.e. without the "attributes" node. The input document includes furthermore all scoped objects on level "1" with their complete representations (without name-contained objects). These are the two "ManagedElement" objects, the "PerfMetricJob" object, and the "ThresholdMonitor" object.
	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted to a XML document Note that a valid XML document has one and only one root element. For that reason the "SubNetwork" element needs to be added as root element..
	<SubNetwork>

 <id>SN1</id>

 <ManagedElement>

 <id>ME1</id>

 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>

</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

	<ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=2\

 filter=/*/*/*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "XyzFunction" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

An identical response is returned when using the following requests:

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_SUBTREE&scopeLevel=2\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL\

 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

This example returns the containment tree only.
	GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org

Accept: application/json

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

}

When the MnS Consumer does not know the root object of the containment tree and wants to retrieve the complete tree starting with the root, the target URI needs to identify the NRM root, i.e. the resource above the root object. According to clause 4.4.2, this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example "/ProvMnS/1700". In the following example, the "attributes" query parameter is empty and only the name-containment hierarchy (without attributes) is returned.
	GET /ProvMnS/1700?scopeType=BASE_ALL&attributes= HTTP/1.1

Host: example.org

Accept: application/json

The response is illustrated below. Properties of the MnS may be returned as siblings of "SubNetwork", as indicated in the example below by the placeholder "…".

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 ...,

 "SubNetwork": [

 {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

 }

]

}

Multiple root resources can be returned as well. For example, assume a NRM with three "SubNetwork" root resources, then the response may look like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 ...,

 "SubNetwork": [

 {

 "id": "SN1",

 ...

 },

 {

 "id": "SN2",

 ...

 },

 {

 "id": "SN3",

 ...

 }

]

}

Note that when the target URI identifies the NRM root, then the name of the document (root) element, to which an XPath expression is applied, is "nrmRoot". The first step of the location path of an XPath expression is hence "/nrmRoot". For example, the following HTTP GET request returns the "SubNetwork" with the identifier "SN1".

	GET /ProvMnS/1700?\

 scopeType=BASE_ALL\

 filter=/nrmRoot/SubNetwork[id="SN1"] HTTP/1.1

Host: example.org

Accept: application/json

	End of modifications

