
3GPP TSG-SA5 Meeting #145

 DOCPROPERTY MtgTitle * MERGEFORMAT -e
S5-225399
Online, , 15th Aug 2022 - 24th Aug 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0063
	rev
	-
	Current version:
	17.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-17 CR 32.158 Clarify use of the JSON Patch test operation

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	REST_SS, TEI17
	
	Date:
	2022-08-05

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	JSON PATCH features a test operation, but this operation is nor mentioned at all in this TS. It needs to be clarified that this operation can be used for building conditional tests to make sure servers support it.

	
	

	Summary of change:
	The usage of the JSON PATCH test operation is described.

	
	

	Consequences if not approved:
	Interoperability issues as to the JSON PATCH test operation persist.

	
	

	Clauses affected:
	6.3.3, 6.4.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

6.3.3
JSON Patch

The JSON Patch format is specified in RFC 6902 [13]. The patch document is a JSON array. Each array item is a JSON object describing a modification to be applied to the target resource. The modifications shall be applied to the target resource sequentially in the order they appear in the array. The media type of JSON Patch is "application/json-patch+json".
Each modification is defined by three properties: The operation ("op"), the identification of the secondary resource within the target resource to be manipulated ("path") and a value ("value") that is not present when removing a secondary resource. When moving or copying an existing value, the "value" property is absent and a "from" property is present instead. The value of the "from" and "path" property is a JSON Pointer in string representation as defined in Section 5 of RFC 6901 [14].

In contrast to JSON Merge Patch, JSON Patch allows to modify individual items of an array. Array items are identified based on their position (index) in an array. The first item has the index "0". The "-" character is used by the operations "add" and "move" to index the end of the array for appending a new array item. Its use in any other operation is forbidden.
The target URI identifies the resource to be modified. As for JSON Merge Patch, the target URI shall have no query and no fragment component. The target resource must exist, otherwise the error status code 404 (Not Found) shall be returned.
[image: image1.png]
Figure 6.3.3-1: Flow for partially updating a resource with JSON Patch
The procedure flow is as follows:

1)
The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body shall carry a JSON Patch document describing a set of modification instructions to be applied to the target resource.

2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
As JSON Merge Patch, also JSON Patch shall be used for patching the target resource only. The patch format shall not be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child resources are included in the schema definition of the target resource. This is because JSON Patch can address items in an array only based on the position of the item in the array, and not based on an identifier independent from the position of the item in the array. A patch document could hence not address descendant resources of the target resource based on their "id". This is prone to conflicts in multi-client scenarios, where the position of resource items in an array can change due to the concurrent creation or deletion of resource items in the same array. Risk mitigation would require complex ETag calculations in the resource hierarchy.
The following example adds a new attribute "attrA" to an "XyzFunction".

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "add",

 "path": "/attributes",

 "value": {

 "attrA": "abc"

 }

 }

]

The following example replaces its value with "def".

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "replace",

 "path": "/attributes/attrA",

 "value": {

 "attrA": "def"

 }

 }

]

It is not an error if the "path" property of an "add" operation specifies an object member that exists already. In this case the value of the specified object member is replaced. The following patch request has hence the same effect as the patch request in the example above. In both cases the value of "attrA" is replaced with "def".

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "add",

 "path": "/attributes/attrA",
 "value": "def"
 }

]

The following patch document has not the same effect as both examples above. It does not replace the value of "attrA" with a new value. Instead, it replaces the value of the "attributes" object with a value that is an object and has a single member, the "attrA" property (attribute), thereby deleting all other attributes, that may exist when the patch request is received.

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json

[

 {

 "op": "replace",

 "path": "/attributes",

 "value": {

 "attrA": "def"

 }

 }

]

Note that the "test" operation can be used to construct conditional patch requests. In the following example the "attrA" value is replaced only with "ghi" if the current value is "def", otherwise the test operation fails and the complete patch request is not applied.

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "test",

 "path": "/attributes/attrA",
 "value": "def"
 },
 {

 "op": "replace",

 "path": "/attributes/attrA",
 "value": "ghi"
 }

]

Conditional patch requests based on the "test" operation are limited to conditions related to secondary rersources (attributes) of the target resource. It is not possible to point to secondary resources outside of the target resource using the "path" property.

Multiple test operations can be combined to construct requests with multiple conditions. All conditions must evaluate to true for the patch document to be applied. In other words, the test operations are linked with a logical "and" operator.
	Next modification

6.4.3
3GPP JSON Patch

3GPP JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]).

Like 3GPP JSON Merge Patch, it allows, using a single patch document, to update the target resource (as does JSON Patch) and to update, create or delete descendant resources, which JSON Patch does not allow, at least not based on resource identifiers.

This extension is that the "path" and "from" properties of a patch operation define an offset to the target resource as specified by the request URI. This offset is relative to the target URI. It has a first component pointing to a resource below the target resource, and a second component pointing to a secondary resource within the resource identified by the first component.

The first component of "path" or "from" is built from URI path components. It follows the same syntax as the path components of the target URI. The second component is a URI fragment with a JSON pointer in the URI fragment identifier representation as defined in clause 6 of RFC 6901 [14], i.e. the second component starts with the "#" character. Both components are concatenated without a delimiter.
For example, assume the target URI is "/SubNetwork=SN1" and the "userLabel" attribute of a child of class "ManagedElement" with the id "ME1" is to be patched, then the first path component is "/ManagedElement=ME1/" and the second path component is "#attributes/userLabel". This results in the following path:

 "path": "/ManagedElement=ME1/#attributes/userLabel".

The target URI shall identify a common ancestor resource of the resources to be patched.

When creating new resources ("op"="add"), the object class name of the resource to be created shall be included in the "value" property of the operation.

The media type of 3GPP JSON Merge Patch is "3gpp-patch+json". This media type is defined by 3GPP and is not registered with IANA. Patch documents using this media type must conform to the "application/json" media type.
The procedure is as follows:

1)
The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The message body carries a 3GPP JSON Patch document describing a set of modification instructions to be applied to the identified resources.
2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resources, constructed according to either the flat or hierarchical response construction method described in clause 6.1.1, in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
A single operation in a 3GPP JSON Patch document shall patch a single (primary) resource only. Different operations in a patch document can patch different resources though. The consequence of this restriction is for example that subtrees with multiple resources cannot be created or deleted with a single patch operation. Each resource needs to be created or deleted with an own patch operation in the patch document. This behaviour is aligned with those of the PUT and DELETE methods.

Note that the "replace" operation of (3GPP) JSON Patch has replace semantics like PUT and not merge semantics like JSON Merge Patch. When multiple attributes or attribute fields of a resource are patched, then a patch operation for each update is required, for example

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"

 },

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654

 }
]

To streamline partial updates of single resources, 3GPP JSON Patch introduces a new patch operation named "merge". For that operation, the JSON object contained in the "value" property shall be merged into the target resource referenced by "path" using the rules of JSON Merge Patch (RFC 7396 [12]). An MnS Producer shall verify if a "merge" operation is for a single resource by checking if the "path" property contains the string "#/attributes" and shall reject the request with "422 Unprocessable Entity" if it doesn't.
With the "merge" operation, the updates in the previous example can be expressed as follows.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",

 "path": "#/attributes",

 "value": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 }

 }

]

The following example is invalid. It attempts to patch the contained "ManagedElement" resources, which is not allowed.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",

 "path": "",

 "value": {

 "attributes": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 },

 "ManagedElement": [

 {

 ...
 }

]

 }

 }

]

In the same way as JSON Patch allows to construct conditional patch requests using the "test" operation, 3GPP JSON Patch can be used to construct condititional patch requests where the condition is expressed with the "test" operation. In contrast to JSON Patch, however, the condition may be based on attribute values outside of the patched resource.

For example, the following patch document replaces the value of "attrA", which is an attribute of a "XyzFunction" resource whereas the condition relates to an attribute in the "SubNetwork" resource.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "test",

 "path": "#/attributes/userLabel",
 "value": "Berlin NW"
 },
 {

 "op": "replace",

 "path": "/ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrA",
 "value": "ghi"
 }

]

	End of modifications

